Neutrino Physics and Machine Learning 2023

America/New_York
Tufts University

Tufts University

4th Floor Tufts Collaborative Learning and Innovation Center (CLIC) 574 Boston Ave, Medford, MA 02155 Zoom link: https://tufts.zoom.us/j/94932630273?pwd=Z3VSK3A2Tmx2a21uaDdsVHRSenU1dz09 Meeting ID: 949 3263 0273 Passcode: 880336
Aobo Li (Boston University), Corey Adams (Argonne National Laboratory), Francois Drielsma (SLAC), Kazuhiro Terao (SLAC), Marco Del Tutto (Fermilab), Nick Prouse (TRIUMF), Patrick de Perio (TRIUMF), Taritree Wongjirad (Tufts University)
Description

Machine Learning (ML) techniques have been adopted at all levels of applications including experimental design optimization, detector operations and data taking, physics simulations, data reconstruction, and physics inference. Neutrino Physics and Machine Learning (NPML) is dedicated to identify, review, and build future directions for impactful research topics for applying ML techniques in Neutrino Physics.

We invite both individual speakers as well as representatives from a large collaboration in the neutrino community to share the development and applications of ML techniques. Speakers from outside neutrino physics are welcome to make contributions.

Registration: use this registration form (under construction).

Talk Request: please submit your contribution request in this indico page (call for abstracts).

Organization Committee [contact]

C. Adams (ANL), M. Del Tutto (FNAL), P. de Perio (IPMU), F. Drielsma (SLAC), A. Li (UNC), N. Prouse (ICL), K. Terao (SLAC), T. Wongjirad (Tufts)

Surveys
Food Preferences/Allergies