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Neutrinoless Double-Beta Decay in Xenon-136

e Ordinary double-beta decay first observed in EXO-200
e Neutrinoless double-beta decay would demonstrate the Majorana nature of
neutrinos and violation of lepton number conservation

e "%Xe has many useful properties for this search, including ease of isotopic
enrichment and high Q-value
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NnEXO Overview

e TPC with 5000 kg of 90% enriched "**Xe
e Scientific Reach - Sensitivity to OvBB in *°Xe
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nEXO projects a 1.35x10%® year half-life sensitivity to OvBB in '3¢Xe at 90% C.L.
e nEXO'’s Signals

SiPMs to collect scintillation light
Charge Tiles to collect ionization signal

e nEXO has low intrinsic backgrounds

e Gamma backgrounds are dominant
Multiple Scatters

~2.5MeV
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1. nEXQ’s Topological Discriminator - Infrastructure

Software

e PyTorch
e ResNet18 - Deep Convolutional Neural Network (D)CNN

o 18 Layer Residual Neural Network
o  Well suited for adjacency found in time and across channels

e AdamW - Stochastic Gradient Descent Method

2D Conv. + ReLU + BatchNorm 2D Conv. (stride 2) + ReLU + BatchNorm -~ Shortcut connections
Max pooling Average pooling FC + sigmoid FC + LeakyReLU FC + normalization
Tomasevi¢ et al. (2022). Reconstructing Superquadrics from Intensity
and Color Images. Sensors. 22. 5332. 10.3390/s22145332.

(Not exact, just a visualization) 9



1. nEXQ’s Topological Discriminator - Simulations

GEANT4 simulations using NEST generate photons/electrons in LXe
Charge simulations - in-line channels are summed
Downsample from ~1500 -> 255 points in time, biased towards peak

Final product: Time reversed, noised, current waveforms
o 2 (xly layers) x 200 (channels/layer) x 255 (WF amplitude points)

y-channels

al
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Z. Li et al. (nEXO), “Simulation of charge readout with segmented tiles in nEXO,” Journal of Instrumentation 14, P09020-P09020 (2019).
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1. nEXQO'’s Topological Discriminator - Training/Validation

e Signal events - 200k beta events

o Beta events have similar topology to OvBB/2vBB Training/Validation Data
o Easy to control energy distribution

e Background events - 200k gamma events

e |dentical Event Distributions
o  Uniform energy
m [1,2MeV] - Lower than Q_,
o Uniform position
m Active LXe (bounded by field rings, cathode, anode)

] 80/20 Train i ng/Val idation Spl it ° Background-Like Signal-Like Validation Data

Training Data Training Data (Properly Labeled)
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1. nEXQO'’s Topological Discriminator - Analysis

Performance Metric: Background misidentification given 85% signal efficiency
o This differs from the statistical approach to be used in nEXO

Assigned as such to each epoch (20 epochs per trial)
o Overtraining - the epoch with the best performance metric is selected per trial
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2. Network Performance vs Noise - Motivation

How does changing the amplitude of RMS noise on
charge readout electronics impact the performance of
nEXO’s topological discriminator?

Performance: How well the network can identify signal events while excluding background events

15



Amplitude + offset (a.u.)

_— nEX®
2. Network Performance vs Noise - Methodology

Generate noise library with varied RMS noise amplitude
Generate waveforms using corresponding noise library (images below)
Train network

Determine performance metric
o NB: training and validation data have same noise (i.e. 120e- and 120e-)
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2. Network Performance vs Noise - Results
e The performance of the network does have a dependence on noise

e Discriminator benefits from engineering yielding low electronic noise
o Done for the sake of improving energy resolution
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2. Network Performance vs Noise - Conclusions
e Energy resolution is more sensitive to electronic noise than the topological

discriminator in terms of overall impact to nEXQO'’s scientific reach
o nEXQO’s dependence on energy resolution is small
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3. Training a CNN w/ Mixed Datasets - Motivation

e How well does nEXO'’s topological discriminator learn from datasets
that are not purely, correctly labeled, gammas/betas?

e Why? If we want to train a network using experimental waveforms rather than
simulated waveforms, we would not be able to have sets of pure beta events

o Calibrations data: ~100% gamma events from 6 hot external sources

o Physics data: mix of double-beta and gamma events

e Proof of concept: Simulated “calibration” and “physics” sets can train an
effective discriminator for gammas and betas

20
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3. Training a CNN w/ Mixed Datasets - Methodology

Training with “Calibrations™ and “Physics” sets
o Physics sets are composed of 0-20% gamma events

Validation data is still properly labeled betas and gammas

Pure” datasets - same as before (0% gammas) “Mixed” physics dataset (20% gammas)
= 8
8] y-events S| y-events
2 2
0 HEl (B-events — EEl p-events
2 2
[ C
Vo (=]
> o > 8
w g w o
4— O w— 9
o - (@)
| . —
3 2
ES £33
53] 53
Z n Z n
"Calibr'ations" "Physics" Validation Data ® "Calibrations" "Physics" Validation Data
Training Data Training Data (Properly Labeled) Training Data Training Data (Properly Labeled)

21



\
3. Training a CNN w/ Mixed Datasets - Results

nEX®

e Performance impacts, if any, are very small
o  Overtraining likely caused variations O(1%)
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3. Training a CNN w/ Mixed Datasets - Conclusions

e \We have shown mixed datasets can be used to train a discriminator
e This study used datasets with identical energy and spatial distributions,

experimental data will not - how can we effectively use such datasets?

o Calibration events, intrinsic backgrounds, and 2vBB/0vBB events all have unique energy and
spatial distributions from one another

e Can we train an effective signal/background
discriminator using 2vBB events mixed with o (a)
backgrounds and a pure set of calibration gammas? —JL
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. Twitter: @nEXOexperiment :
Summary Slide (En https://nexo.linl.gov/diversity-equity-and-inclusion nEX@

5 q q A f q .
1. nEXQO’s Topological Discriminator 2. Performance vs Noise 3. Mixed Dataset Study
e ResNet18 - 18 layer Convolutional Neural Network e Performance depends on noise e nEXO’s CNN can be trained using a pure
e Energy resolution is more sensitive to noise “calibrations” dataset and mixed “physics” dataset
(with identical distributions in energy and space)
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