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Exa.TrkX

• Exa.TrkX is a collaboration developing 
next-generation Graph Neural Network 
(GNN) reconstruction for HEP:  

• Energy Frontier 
• Expand on HEP.TrkX's prototype 

GNN for HL-LHC. 
• Incorporate into ATLAS's simulation 

and validation chain. 

• Intensity Frontier 
• Explore viability of HEP.TrkX network 

for neutrino physics. 
• Develop GNN-based reconstruction 

for Liquid Argon TPCs.
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Liquid Argon TPCs

• Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily 
utilised detector technology in neutrino physics. 
• At FNAL: MicroBooNE, Icarus, SBND. 
• Future: DUNE (70kT LArTPC deep underground, plus near detector).

• Charged particles ionize liquid 
argon as they travel. 

• Ionisation electrons drift due to 
HV electrode field, and are 
collected by anode wires. 

• Wire spacing ~3mm –  
high-resolution detector.
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GNN reconstruction for Neutrino Physics

• The work presented here today utilises simulated neutrinos from 
MicroBooNE's Open Data Release (link). 
• Simulated neutrino interactions with cosmic data overlays. 

• This network architecture was originally developed in the context of 
the DUNE Far Detector geometry. 
• Motivation: reconstructing complex and high-multiplicity 

atmospheric and ντ interactions. 

• This network architecture is developed to have broad applicability, 
without being tied to any particular detector geometry. 
• Also deployed on non-LArTPC detector technology!
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Event graphs for neutrino physics

9

• We describe a physics interaction as a heterogeneous graph, with each plane's detector 
hits acting as the nodes of an independent subgraph. 
• Each hit node is described by four input features: wire index, hit time, integral and 

RMS width. 
• Edges are formed for each planar subgraph using the Delaunay triangulation algorithm.
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NuGraph2 architecture

• NuGraph2's core convolution engine is a self-
attention message passing network utilising 
a categorical embedding. 
• Each particle category is provided with a 

separate set of embedded features, which 
are convolved independently. 

• Context information is exchanged between 
different particle types via a categorical 
cross-attention mechanism. 

• Each message-passing iteration consists of two 
phases, the planar step and the nexus step: 
• Pass messages internally in each plane. 
• Pass messages up to 3D nexus nodes to 

share context information.
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Nexus mechanism

• Perform message-passing independently in each detector view.
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• Propagate 2D node features to nexus nodes generated from simple 
spacepoint reconstruction.
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Nexus mechanism
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• Convolve nexus node features to mix information between detector 
planes.
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• Propagate 3D nexus nodes features back down to 2D planar nodes.
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Nexus mechanism
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Background filtering

• For on-surface detectors, detector readout often contains a mixture of signal and 
background information (ie. cosmic interactions). 

• Train a decoder to learn a binary score for each hit, determining whether it should 
be considered part of the physics interaction.
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Background filtering
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Example event #1

• For on-surface detectors, detector readout often contains a mixture of signal and 
background information (ie. cosmic interactions). 

• Train a decoder to learn a binary score for each hit, determining whether it should 
be considered part of the physics interaction.
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Background filtering
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Example event #2

• For on-surface detectors, detector readout often contains a mixture of signal and 
background information (ie. cosmic interactions). 

• Train a decoder to learn a binary score for each hit, determining whether it should 
be considered part of the physics interaction.
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Background filtering
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Example event #2

• For on-surface detectors, detector readout often contains a mixture of signal and 
background information (ie. cosmic interactions). 

• Train a decoder to learn a binary score for each hit, determining whether it should 
be considered part of the physics interaction.
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Background filtering
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Example event #3

• For on-surface detectors, detector readout often contains a mixture of signal and 
background information (ie. cosmic interactions). 

• Train a decoder to learn a binary score for each hit, determining whether it should 
be considered part of the physics interaction.
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Example event #3

• For on-surface detectors, detector readout often contains a mixture of signal and 
background information (ie. cosmic interactions). 

• Train a decoder to learn a binary score for each hit, determining whether it should 
be considered part of the physics interaction.
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Background filtering

35

Example event #4

• For on-surface detectors, detector readout often contains a mixture of signal and 
background information (ie. cosmic interactions). 

• Train a decoder to learn a binary score for each hit, determining whether it should 
be considered part of the physics interaction.
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Background filtering
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Example event #4

• For on-surface detectors, detector readout often contains a mixture of signal and 
background information (ie. cosmic interactions). 

• Train a decoder to learn a binary score for each hit, determining whether it should 
be considered part of the physics interaction.
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Background filtering results

• Performance metrics: recall 0.978, precision 0.977. 

• Inference time: 0.12 s/evt on CPU, 0.005s/evt batched on GPU

Recall matrix
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Background filtering results
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• Performance metrics: recall 0.978, precision 0.977. 

• Inference time: 0.12 s/evt on CPU, 0.005s/evt batched on GPU

Recall matrix GPU inference time vs batch size
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Hit classification

• The primary goal of NuGraph2 is to classify each detector hit 
according to particle type. 

• Use five semantic categories: 
• MIP: Minimum ionising particles (muons, pions etc) 
• HIP: Highly ionising particles (protons, nucleons etc) 
• EM showers 
• Michel electrons 
• Diffuse activity (Compton scatters, neutrons etc) 

• Going forward, will expand to more granular labelling schemes for 
possible μ/π/κ and e/γ separation.
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Hit classification

• For signal hits as defined for the background filtering task, we can use MC truth 
information to label the type of particle that produced each detector hit. 

• Train a decoder to learn a set of probabilities for each hit, determining the particle 
type.

47
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Example event #1

Hit classification

• For signal hits as defined for the background filtering task, we can use MC truth 
information to label the type of particle that produced each detector hit. 

• Train a decoder to learn a set of probabilities for each hit, determining the particle 
type.
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Example event #2

Hit classification

• For signal hits as defined for the background filtering task, we can use MC truth 
information to label the type of particle that produced each detector hit. 

• Train a decoder to learn a set of probabilities for each hit, determining the particle 
type.
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Example event #3

Hit classification

• For signal hits as defined for the background filtering task, we can use MC truth 
information to label the type of particle that produced each detector hit. 

• Train a decoder to learn a set of probabilities for each hit, determining the particle 
type.
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Example event #3

Hit classification

• For signal hits as defined for the background filtering task, we can use MC truth 
information to label the type of particle that produced each detector hit. 
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Example event #4

Hit classification

• For signal hits as defined for the background filtering task, we can use MC truth 
information to label the type of particle that produced each detector hit. 

• Train a decoder to learn a set of probabilities for each hit, determining the particle 
type.
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Example event #4

Hit classification

• For signal hits as defined for the background filtering task, we can use MC truth 
information to label the type of particle that produced each detector hit. 

• Train a decoder to learn a set of probabilities for each hit, determining the particle 
type.
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Hit classification results
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• Performance metrics: recall 0.948, precision 0.948. 

• Recently improved performance by enhancing νμ component of dataset, and 
using recall loss to counteract class imbalance.

Recall matrix Precision matrix
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Looking forward

• Interaction vertexing (Jonathan Huang, UChicago): 
• LSTM decoder for predicting 3D neutrino vertex 

position. 
• Learn a combination of physics (vertex position) and 

geometry (2D to 3D coordinate transformation). 
• Prototype decoder achieves ~25cm 3D resolution.
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• Clustering (Marcelo Iovon, UCincinnati): 
• Object condensation decoder for grouping hits into 

particles. 
• Share instance labels between planes, to group 2D hits 

into natively 3D clusters. 
• Efficient clustering is our highest priority, since it enables a 

wealth of hierarchical graph approaches.
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Common abstraction for neutrino experiments

• Although the details of many neutrino physics experiments vary, the majority of them 
share a common paradigm at a high level.

NOvA
Neutrino generator 

(GENIE)

Particle simulation 
(Geant4)

True light 
depositions

Photoelectrons 
on APDs

Neutrino generator 
(GENIE)

Particle simulation 
(Geant4)

True ionization 
electrons

Pulses on 
TPC wires

MicroBooNE Shared structure

Event information

True particles

True energy 
deposits

Detector hits

66
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NuML & PyNuML

• The NuML package is a toolkit for writing physics event records to an HDF5 file 
format. 
• Hold low-level information such as simulated particles, hits, true energy 

depositions etc. 
• Generic data structure can be shared across experiments. 
• Common interface with PandAna analysis toolkit (see CHEP 2021 talk). 
• Available as LArSoft package on GitHub. 

• The PyNuML package is designed to provide a generic, accessible, efficient and 
flexible solution for many of the necessary tasks in leveraging ML for particle physics. 
• Define particle ground truth labels for Geant4-simulated particles. 
• Arrange detector hits into ML objects, ie. graphs, CNN pixel maps, etc. 
• Efficiently preprocess ML inputs in parallel in HPC environments using MPI. 
• Available as Python package on GitHub, or install with pip install pynuml!
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https://indico.cern.ch/event/948465/contributions/4324118/
https://github.com/vhewes/numl
http://www.apple.com


NuGraph2 – V Hewes – 22nd August 2023

NuML & PyNuML

• The NuML package is a toolkit for writing physics event records to an HDF5 file 
format. 
• Hold low-level information such as simulated particles, hits, true energy 

depositions etc. 
• Generic data structure can be shared across experiments. 
• Common interface with PandAna analysis toolkit (see CHEP 2021 talk). 
• Available as LArSoft package on GitHub. 

• The PyNuML package is designed to provide a generic, accessible, efficient and 
flexible solution for many of the necessary tasks in leveraging ML for particle physics. 
• Define particle ground truth labels for Geant4-simulated particles. 
• Arrange detector hits into ML objects, ie. graphs, CNN pixel maps, etc. 
• Efficiently preprocess ML inputs in parallel in HPC environments using MPI. 
• Available as Python package on GitHub, or install with pip install pynuml!

68

https://indico.cern.ch/event/948465/contributions/4324118/
https://github.com/vhewes/numl
http://www.apple.com


NuGraph2 – V Hewes – 22nd August 2023

Summary

69

• NuGraph2 is a multi-purpose GNN architecture for reconstructing 
neutrino interactions in MicroBooNE, DUNE and elsewhere. 
• Efficiently reject background detector hits. 
• Classify detector hits according to particle type. 
• Future: vertexing, clustering, hierarchical graphs! 

• NeutrinoML toolkit for standardising the process of producing 
ML inputs from HEP data for general use. 
• Utilised for MicroBooNE's public data release. 
• Open-source, easy-to-install code packages.


