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Neutrino Sources
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The Standard Neutrino Oscillations

Expected number without neutrino oscillation

+ SK data Slﬁ!

Expected number with neutrino oscillation 3
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Open questions:
e The value of leptonic o, o
e Mass Ordering (MO), i.e. is Am3, > 0 (Normal)
or <0 (Inverted)? o

e What's 0,, octant (> or <m/4) ?
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SNO, arXiv:1602.02469
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Neutrino Interactions
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In water Cherenkov detectors, neutrino flavor is known by the outgoing
lepton flavor in charged current (CC) interactions.
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Event Topology in Water Cherenkov Detectors

Different particles have different types of rings

N~ =
neutral ® e

electron
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The Current and Next Generation Water Cherenkov Experiments
F 4 . «'t"v*x.
e '("‘1 "’\ ' Water Cherenkov Test
: *f‘ 3 ) Experlment (WCTE) @ CERN
Starting in 2024
multi-PMT modules

(mPMT)
Tagged lepton/hadron

Upgraded proton beam:
o 500 kW->1.3 MW
Upgraded Near Detector

New intermediate water
Cherenkov detector (IWCD)

Mt.
Nijugo-Yama
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Potential for CP-Violation Discovery in Hyper-K
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Tasks to be Completed

Better o Robust physics
signal/background Accuratte a:r_d efficient inference
discrimination reconstruction - ar
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The state-of-the-art

FiTQun is the event reconstruction algorithm used in SK and T2K based on
the “maximume-likelihood” method.

The core of this process is to, given the PMT signal information, find among
many competing event hypotheses X the one that maximizes the likelihood

over all PMTs:
unhit hit
L(x) = H Pi(unhit | x)H {1 — P,(unhit | x)} J(q: | 0f ([ %)
j i
¢

Combined Probabilities of a single photosensor Comparing observed
likelihood function registering hits from this event; i and j iterates charge q and time t to the
of all PMTs for through the hit/unhit PMTs respectively. predictions by hypothesis x.

event hypothesis x
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Improving e/u classification

2 Ton Crane

.~ Water Storage Tanks

Water Purification

multi-PMT Module

Conceptual design of IWCD
- ~300t water tank

- ~750 m from beam target

- ~400 mPMT modules
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Constraining 29223 with the < 1% intrinsic ¥e(7) in the vu(7)

beam before oscillation.

FiTQun can achieve > 99% Particle-IDentification (PID)
accuracy in single-ring e/y.

Need > 99.9% efficiency in y rejection.

fiTQun PID performance with atmospheric v
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ResNet-18 for e/u classification

e Using ResNet-18 architecture (K. He et al. arXiv:1512.03385) N. Prouse, NuFact22
e Currently each mPMT is mapped to one channel of depth = 19 (for the PMT charge) §wercnmaL org
e The inclusion of PMT timing is in progress

34-layer residual

PE)| JPw)| ) |Pe)

M- 151 pixel convolution over “Softmax discriminators” for
the mPMT channels PID likelihoods
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Performances of single-ring (SR) e/u classification in IWCD
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*fiTQun is not optimized for IWCD environment yet
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Separation of SR e/y events in IWCD

‘Wc‘tChMuL.or‘g

e efficiency when rejecting 80% of y

e/ A more challenging
background since electron
and gamma events appear
almost identical in water.

ResNet e/n

<
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fiTQun Minute difference from the
gamma initial track before the
pair production of e*e".

N
o

Prelimi DL shows greater potential to
reliminary achieve a better background

rejection rate.
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*fiTQun is not optimized for IWCD environment yet
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SR Event Reconstruction with ResNet-18

SR “particle gun” events in IWCD ,‘Wa?ChMcL.org
50 50
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Multi-Ring (MR) Events

Multi-ring events are critical to neutrino oscillation analyses.
They usually have one or more %1 in the intermediate and/or final event topology.
Oscillation resonance of few GeV

o-like neutrinos in the earth core and
MR mantle provides sensitivity to MO

The T2K oscillation analysis will

include multi-ring samples starting
from this year!
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“Single-vertex” MR Events

Electron signal PID efficiency [%]

NC#° background

80

60

40

20

M. Wilking Aspen
Winter Workshop
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ResNet

fiTQun

Assuming 95% =’ rejection across rec. P,

*fiTQun is not optimized for
IWCD environment yet
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Panoptic segmentation for the two
gamma rings using full-resolution
residual networks (FRRN).

T. Pohlen et al., 2017
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The features at all resolution
levels can be propagated

directly to the loss.
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True hit labeling:
v #1, v #2

Preliminary

FRRN
segmentation:
y#HL, vy #2

Preliminary
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https://indico.cern.ch/event/224351/#8-a-new-method-for-event-recon
https://indico.cern.ch/event/224351/#8-a-new-method-for-event-recon
https://openaccess.thecvf.com/content_cvpr_2017/papers/Pohlen_Full-Resolution_Residual_Networks_CVPR_2017_paper.pdf

Multi-vertex MR Events
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M. Jiang et al., PTEP 053F01 (2019)

True number of rings fiTQun reconstruction

IR 2R

95.0% 4.64%
27.8% 66.7%
7.04% 25.5%

> 3R

0.41%
5.56%
67.5%

True 1R
True 2R
True >3R

Many challenges exist:

Pion re-interaction rate uncertainties
Pile-up and saturation of multi-rings
Similar Cherenkov rings, e.g. * vs. p*
Computing efficiency [O(min)->O(ms)]

Water Cherenkov Test
Experiment (WCTE)
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Various studies ongoing:

- NN including Boosted Decision Trees (BDT),
ResNet, PointNet, and more.

- WCTE with 0.1~1.2 GeV tagged e/p/11/p beams,
starting in 2024, will help achieving better
reconstruction and understanding of these
particles’ detection in water.
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CNN-based Cherenkov Ring Generator

Diagram made by PlotNeuralNet

arXiv:2202.01276

D

w

Cylindrical detector
separated into three
parts: top, barrel, and
bottom.

N
(['o°d] D)6oT

=

0

Generating WC detector responses
(Q&T correlated) to a particle of given
particle type, energy, position, and
direction.

Loss designed based on the fiTQun
likelihood with substantially more
flexibility, and can be trained on the
“physics MC”.
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https://arxiv.org/abs/2202.01276
https://zenodo.org/record/2526396

CNN-based Cherenkov Ring Generator

arXiv:2202.01276

The charge and timing likelihood functions of each PMT hit are 400 :
not always simple Gaussians due to various factors including B p~ 10 Gaussian
electronics, multi-PE hits, scattered photons, and more. e~ 10 Gaussian

Al/DL techniques allow more flexibilities in modeling individual
PMT’s responses and help achieving better representation with

finer details.
|—— 1 Gaussian | - 5 Gaussians
—— 3 Gaussians - 10 Gaussians
- B Simulation - _ 4 _ 2 0 2 4
@ Q
= = e/u PID le3
&6 SR electron - SR muon Demonstration of the PID likelihoods given
S 0 4+ by a trained CNN for single ring events

4
, uniformly generated inside the WC
z-@ detector. Pile-up of events around the
— : - boundary comes from the events near
1000 1100 900 1000 1100
Time [ns] Time [ns] detector walls.
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Towards a robust physics inference

A conventional analysis pipeline
- Same physics factored into different parts, e.g. sequential
simulation and calibration.
- Limited optimizability for simulation and data/MC

Reconstructed
Data

A

discrepancies. |

Calibration Physics Data
| Data
Physics Generator
(e.g. Geant4) —
Tune i
] Reconstruction
' — Algorithm
Detector | Tuning 0
Simulation MC's
[
[

}} pooyl=xi xey

Y

Physics MC

White: physics domain
Grey: detector domain
Blue: connection of the two domains

Deep Learning for Water Cherenkov Detectors - J. Xia

A 4

sisAjeuy

soIsAyd

Reconstructed MC




Towards a robust physics inference

Al/DL-based analysis pipeline

- Optimizing the simulation as a whole with calibration data
- Explainable with well-understood physics while good
approximation to complex features in real data with NN

Calibration Data Physics Data Y
@,
(9]
(7))
— o>
. Q

Physics Generator 5 2
g »
_ . Train 1

Detector Simulation [+ = Neural Network - Surrogate Model

Improve

A
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Towards a robust physics inference

US-lapan Science and Technology Gooperation Pregram

Enabling New Machine Learning Techniques for the Data-Driven
Physics Modeling and Analysis of Long Baseline Neutrino
Oscillation Experiments

K.Terao, SLAC (Principal Investigator, the U.S.)
P. de Perio, IPMU (Principal Investigator, Japan)

See P. Tsang’s talk!

P. Tsang, SLAC (Co-Investigator) ( T3 ‘
H. Tanaka, SLAC (Co-Investigator) Ly ¥
Z. Zhang, SLAC (Co-Investigator) 'l&
Y. Nashed, SLAC (Co-Investigator) %
M. Wilking, SLAC (Co-Investigator)
ol A K
Ty AN yper-

. N DEEP UNDERGROUND [PMU e
m— NEUTRINO EXPERIMENT
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Towards a robust physics inference

W, tanh Work in progress by J. Potel, ILANCE

2 relu

Systematic error estimation is a popular
and critical subject in the scientific
applications of Al/DL techniques.

'qVI"” Exploring new ideas to improve the
| JA LA current working example of Cherenkov
" ring generator (arXiv:2202.01276).
7 w, b, Y Implementation of Bayesian Neural
ANAN - TR + A = [ Network (BNN) is under investigation.
Y Y

relu

A A
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Other applications of DL - neutron classification

S. Han, Neutrino 2022

Neutrons freed from an Inverse Beta Decay (IBD) will ‘ 10° CNUPER [ Michel-e
be captured pyg proton or.Oxygen nucleus in ~200 ps 102 aK 1 Gd(n.y)
after thermalization, releasing a ~2.2 MeV y. 10 ] 1 p(n,y)

[—1 Noise + Other

—

The same neutron capture with Gadolinium nucleus is ?U 10°;
much faster (~30 us) and stronger signals (~8 MeV vy). 10-11

Detection threshold of SK is ~4 MeV. 1072

10_3 T T T T T
00 02 04 06 08 | 1.0
y-cascade NN Signal likelihood

joddey) 80% efficiency and 98% purity of Gd(ny)
achieved by NN in SK.

thermalisation

Gd-capture

The identification of IBD via neutron capture is a key to the
search of Diffusive Supernova Neutrino Background (DSNB).

At ~ 30 us
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https://indico.kps.or.kr/event/30/contributions/460/

Other applications of DL - neutron classification

IWCD Neutron Tagging, arXiv:2206.12954

Various studies of different NN architectures ongoing for improving neutron capture detection efficiency
with Gd-loaded IWCD simulation.

0.81

0.6

04

Neutron efficiency

0.01+°

0.21

~—— XGBoost, auc=0.784
e GCN, zuc=0.667
------ random guess

~—— DGCNN  (k25), auc=0.797

0.0 0.2 0.4 0.6 0.8
Neutron mis-ID rate

1.0
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Dynamic Graph Convolutional Neural Network (DGCNN,
arXiv:1801.07829 ) and BDT (XGBoost, T. Chen and C.
Guestrin) can achieve similar results and outperform Graph
Convolutional Network (GCN, arXiv:1609.02907).

The dynamic grouping of the nearest pair of nodes in DGCNN
allows the model to learn non-local feature in a graph, while
the feature engineering of XGBoost provides great level of
model interpretability.
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Summary and Outlook

e Neutrino physics with water Cherenkov detectors is entering the era of high precision:
o Systematic uncertainties will become the dominant limits to achieve new discoveries.

e o better constrain the systematics, various deep learning techniques are under
development and show great potential:
o New methods also enable new studies such data-driven physics modelling

e Simultaneously, fiTQun is being improved and generalized as well:
o More fair comparisons around the corner!

e Software frameworks for DL is in place, welcoming application to all physics topics and
further architecture development

WatChMal.org
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Appendix



The Standard Neutrino Oscillations

M m, ms Propagation of Hamiltonian (mass) state and detection in

Hamiltonian basis — - | the weak interaction eigenstate causes flavor change ->

vy Uy IJ3 Neutrino Oscillation

# flavor basis

i Ve
Vﬂ Oscillation probability is related to:
° Amfj -L/E, ,where AmZ =m?—m?and i,j=1,2,3
U e The mixing (PMNS) of the Hamiltonian eigenvectors
T
Ve 1 0 0 C13 0 8136—1:6CP C12 s;2 O 121
Vu | =[O0 co3 23 0 1 0 —s12 ci2 Offf o
Vs 0 —s23 o3 —slgeiécp 0 C13 0 0 1 V3
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FiTQun reconstruction algorithm

unhit

hit

P. de Perio, NNN22

L(x) = H Pj(unhit|p;) [ [{1 — Pi(unhit|p)} £y (gl e) fi(ti]%)

N

e In practice, “predicted charge” is first calculated: u = ué" + ©*“
which is used in the likelihood evaluation, where the direct light contribution is:

S
<
-/ o

s

PMT

Integral over

track lenath PMT solid  PMT angular
g angle response

—. 9(p, s, cos H)IQ(RIT Rie ]

Light Cherenkov Light e Particle ID

yield emission profile  Attenuation : .
p Al information encoded
=400 —=400r

§ y here and extracted

300 0.1 300

200 i 200~ from likelihood

100"l " comparison of

006 08 19 ° 0s different hypotheses
e 1000MeV/c cosd u 1000MeVi/c
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FiTQun reconstruction algorithm

unhit hit
L(x) = [] Pj(unhit|p;) [ [{1 — Pi(unhit|)} fy(gilm) fr(tilx)
J &

. . . " \‘ :
e In practice, “predicted charge” is first calculated: u = ué" + ©*“
which is used in the likelihood evaluation, where the direct light contribution is:

1
it = 0(p) [ ds p(p, )URT(R)(mA(s) o Assuming
direction-averaged
p(p,s) = / 9(p, s,cos ) dQ2 Cherenkov profile

P. de Perio, NNN22

e Scattering table
dusct / derived from
i . .y
djiso.dir uniformly distributed,
isotropic low energy
electrons

A(S) = A(wPMTa Zvtxs Bvtx, 0, 0, ¢) =
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FiTQun reconstruction algorithm

FiTQun can currently reconstruct up to 6
rings in a staged approach

o FEach step sequentially adds a “track-
like” (") or “shower-like” (e) ring

The chain terminates when adding a
ring does not sufficiently improve the fit

Ring counting & PID are significantly
improved

Sample Fit Sequence

Improv:aS/ Imprc.vy Improves

—»
2
eerne eemnmn Tierie mernm Tirree et

nimnme i

iernme nennm
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Hit Charge Distribution

M. Wilking
DUNE Module of Opportunity Workshop
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Computing Time Improvement

P. de Perio, NNN22

Growing MC (and data) sample sizes in high precision era

Event reconstruction becoming a computing time limiting factor
o Especially in systematic error studies varying a large number of detector parameters

fiTQun: ~90 seconds per event on CPU (for e, u, 70 hypotheses in IWCD)

o  Multi-ring events >~5 minutes

ResNet: ~6 ms per event on GPU (for classification and e, u regression)

Factor of 10° speed-up
o But actual throughput will depend on how many GPUs you can afford

Assuming the size and cost of the small CPU and GPU clusters at IPMU:
~ 5000x more throughput with the $ spent on GPUs instead

Deep Learning for Water Cherenkov Detectors - J. Xia
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Convolutional Neural Network (CNN)

Diagram tool by
Alex Lenail, NN-SVG

Input layer
(input image)

Output layer

Convolutional
kernel L]

Fully connected layers

X;41 =.0(W;x; + by)

Non-linear Multiplicative  Additive
activation function  weights biases

Vincent Dumoulin, Francesco Visin
(arXiv:1603.07285)
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https://alexlenail.me/NN-SVG/
https://arxiv.org/abs/1603.07285

PointNet designed to work on ‘point clouds’ rather than

images of pixels

Each hit PMT is a ‘point’ with time, charge & position,
not fixed to grid

Convolution-like operations act on each point’s
charge, time and position

Learn global transformations applied to all points
Single pooling layer from all points to 1D array

Can apply to any detector geometry

Classification Network

input mlp (64,64) feature mlp (64,128,1024) max mlp

- input points
nx3

transform :*—_I—i:: transform :?’_—_j pool 1004 (512,256,k)
o NS 3
— % ol \g — - ;2 Sharcd nx1024 —
. [_J_'_’ - _’f_]_|_' global feature k

e e S e
v

multiply
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image 3x3 CNN convolution
depth
Fiittiisy
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[t1alxy]z i |
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Other applications of DL - solar neutrino classification

A. Yankelevich, NuFact22
Object: reduce radioactive background noise in low energy (a few MeV) solar

. WatChMal.org
neutrino events at SK. 3

106 T ] .
] —— =2t s Sparse hits of low energy events
105 U‘:h > Solar Analysis Cuts | are Cha”enging for ResNet to
S extract features.
: ANN
= 104 »
] S .
;; X Performance also susceptible to
B = noise model.
E .........
10— B
g o e e et e e e
10% =
- BDT trained on the reconstructed variables used in SK's

o &= 13 _ o5 59 i solar neutrino analyses outperform the traditional

Signal Efficiency selection cuts 6x better.
1/FPR vs Signal Efficiency. All events 2.49 MeV < Ekin < 3.49 MeV.
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https://indico.fnal.gov/event/53004/contributions/244482/

The Water Cherenkov Test Experiment (WCTE)

Prototype detector for beam test at CERN in 2024 Ca"bmionsvstemt
mPMT pilot run and test-bed for precision calibration and Al/DL Tanm-
Opportunity to improve systems prior to IWCD and Hyper-K 3.7 m

Tank

Control samples to constrain neutrino experiment modeling
Immediate impact to existing experiments (T2K, Super-K)

mPMT Array / ! ]
Structure I 8
| ®

Water Cherenkov Base Plate
Aerogel Detector
i Threshold
Wire Chambers Shielding

p, e, T, u* (potentially TOF T0
tagged-y) particle beam
from 140-1200 MeV/c = ™S—T

Permanent  Secg, e
Magnet (0.1 TM) ary Bea ------

.....

CERN SPSC Proposal; Hadron production EOI
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https://cds.cern.ch/record/2712416
http://cds.cern.ch/record/2771386

