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Water Cherenkov Detector Principle
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https://physicsopenlab.org/


Neutrino Sources
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“Grand Unified Neutrino Spectrum” 
[arXiv:1910.11878]

Accelerator

https://arxiv.org/abs/1910.11878


The Standard Neutrino Oscillations
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Open questions:

● The value of leptonic δCP
● Mass Ordering (MO), i.e. is            > 0 (Normal) 

or < 0 (Inverted)?
● What’s θ23 octant (> or < π/4) ?

● hint for leptogenesis
● neutrino feature (Dirac or 

Majorana via 0νββ)
● GUTs

SNO, arXiv:1602.02469

https://arxiv.org/abs/1602.02469


Neutrino Interactions
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J. Formaggio and G. Zeller, 
arXiv:1305.7513v1

Increasing energy

In water Cherenkov detectors, neutrino flavor is known by the outgoing 
lepton flavor in charged current (CC) interactions.

νl l-

n p

W+

νl l-

p p

W
π+

CCQE

CC RES

CC DIS

https://arxiv.org/abs/1305.7513v1


Event Topology in Water Cherenkov Detectors
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Different particles have different types of rings



The Current and Next Generation Water Cherenkov Experiments
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Mt. 
Nijugo-Yama
600 m

● Upgraded proton beam: 
○ 500 kW->1.3 MW

● Upgraded Near Detector

IWCD

8.4 x SK = 188 kton

Water Cherenkov Test 
Experiment (WCTE) @ CERN 

- Starting in 2024
- multi-PMT modules 

(mPMT)
- Tagged lepton/hadron 

beam

4 m

4 m

● New intermediate water 
Cherenkov detector (IWCD)



Potential for CP-Violation Discovery in Hyper-K
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Exclusion of sin(δCP) = 0 @ Hyper-K

Impact of T2K systematics
Improvements of systematics

@T2K

Flux+cross section Nucleon removal 
energy

SK 
detector

π
reinteraction

Bkg (NCγ,etc) Total

2.7 3.6 1.5 1.6 3.0 1.5 6.0

Fractional uncertainties from the LO error sources in T2K (%) Phys. Rev. D 103, 112008 (2021)

Need < 3% for 
Hyper-K

https://doi.org/10.1103/PhysRevD.103.112008


Tasks to be Completed
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Better 
signal/background 
discrimination

Robust physics 
inferenceAccurate and efficient 

reconstruction

M. Jiang et al., PTEP 053F01 (2019)

±2%

https://doi.org/10.1093/ptep/ptz015


The state-of-the-art
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Improving e/μ classification
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Conceptual design of IWCD

- ~300t water tank

- ~750 m from beam target

- ~400 mPMT modules

- Constraining                with the < 1% intrinsic          in the  
beam before oscillation.

- FiTQun can achieve > 99% Particle-IDentification (PID) 
accuracy in single-ring e/μ.

- Need > 99.9% efficiency in μ rejection.

fiTQun PID performance with atmospheric ν

M. Jiang et al., PTEP 053F01 (2019)

https://doi.org/10.1093/ptep/ptz015


ResNet-18 for e/μ classification
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19 8cm PMTs in each mPMT module 

P(μ±)P(e±) P(π0) P(γ)

“Softmax discriminators” for 
PID likelihoods

N. Prouse, NuFact22● Using ResNet-18 architecture (K. He et al. arXiv:1512.03385)
● Currently each mPMT is mapped to one channel of depth = 19 (for the PMT charge)
● The inclusion of PMT timing is in progress

https://indico.fnal.gov/event/53004/contributions/244477/
https://arxiv.org/abs/1512.03385


Performances of single-ring (SR) e/μ classification in IWCD
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*fiTQun is not optimized for IWCD environment yet

Truth Quality Cuts:

All events inside the 
detector

Events at least > 50 
cm from detector wall

ResNet

e efficiency when rejecting 99.9% of μ-

fiTQun Preliminary

muons

electrons

Preliminary



Separation of SR e/γ events in IWCD
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*fiTQun is not optimized for IWCD environment yet

e efficiency when rejecting 80% of γ

ResNet

fiTQun

Preliminary

A more challenging 
background since electron 
and gamma events appear 
almost identical in water.

Minute difference from the 
gamma initial track before the 
pair production of e+e-.

DL shows greater potential to 
achieve a better background 
rejection rate. 



SR Event Reconstruction with ResNet-18

Deep Learning for Water Cherenkov Detectors - J. Xia 15

Output particle reconstructed 
quantities instead of PID in the 
last layer of the same ResNet.

So far only using the charge 
information of each PMT hit. 

Including the timing is expected 
to further improve the 
reconstruction performance of 
ResNet.

*fiTQun is not optimized for 
IWCD environment yet

SR “particle gun” events in IWCD
Electron 

Position Resolution
Muon

Position Resolution

Muon
Momentum Resolution

ResNet

fiTQun

Preliminary
ResNet

fiTQun
Electron 

Momentum Resolution

Preliminary Preliminary

Preliminary



Multi-Ring (MR) Events
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Multi-ring events are critical to neutrino oscillation analyses.

They usually have one or more π0/π± in the intermediate and/or final event topology.

The T2K oscillation analysis will 
include multi-ring samples starting 
from this year!

30% more 
statistics
recovered

Oscillation resonance of few GeV 
neutrinos in the earth core and 
mantle provides sensitivity to MO

Oscillation analysis with SK atmospheric neutrinos

e-like 
MR

μ-like 
MR



“Single-vertex” MR Events
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NCπ0 background

M. Wilking Aspen 
Winter Workshop

IWCD ResNet

fiTQun

Assuming 95% π0 rejection across rec. pe

*fiTQun is not optimized for 
IWCD environment yet

True hit labeling:
γ #1, γ #2

FRRN 
segmentation:
γ #1, γ #2

Panoptic segmentation for the two 
gamma rings using full-resolution 
residual networks (FRRN). Preliminary

Preliminary

The features at all resolution 
levels can be propagated 
directly to the loss.

T. Pohlen et al., 2017

https://indico.cern.ch/event/224351/#8-a-new-method-for-event-recon
https://indico.cern.ch/event/224351/#8-a-new-method-for-event-recon
https://openaccess.thecvf.com/content_cvpr_2017/papers/Pohlen_Full-Resolution_Residual_Networks_CVPR_2017_paper.pdf


Multi-vertex MR Events
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Charged pion 
scattering

νπ±

Multi-particle

νπ±

μ

Muon quickly 
decays to electron 

ν
μ

e

Many challenges exist:
- Pion re-interaction rate uncertainties
- Pile-up and saturation of multi-rings
- Similar Cherenkov rings, e.g. π± vs. μ±

- Computing efficiency [O(min)->O(ms)]

4 m

4 m

Water Cherenkov Test 
Experiment (WCTE)

Various studies ongoing:
- NN including Boosted Decision Trees (BDT), 

ResNet, PointNet, and more.
- WCTE with 0.1~1.2 GeV tagged e/μ/π/p beams, 

starting in 2024, will help achieving better 
reconstruction and understanding of these 
particles’ detection in water.  

M. Jiang et al., PTEP 053F01 (2019)

https://doi.org/10.1093/ptep/ptz015


CNN-based Cherenkov Ring Generator
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● Generating WC detector responses 
(Q&T correlated) to a particle of given 
particle type, energy, position, and 
direction.

● Loss designed based on the fiTQun 
likelihood with substantially more 
flexibility, and can be trained on the 
“physics MC”.

Cylindrical detector 
separated into three 
parts: top, barrel, and 
bottom.

arXiv:2202.01276

Diagram made by PlotNeuralNet

https://arxiv.org/abs/2202.01276
https://zenodo.org/record/2526396


CNN-based Cherenkov Ring Generator
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Demonstration of the PID likelihoods given 
by a trained CNN for single ring events 
uniformly generated inside the WC 
detector. Pile-up of events around the 
boundary comes from the events near 
detector walls.

The charge and timing likelihood functions of each PMT hit are 
not always simple Gaussians due to various factors including 
electronics, multi-PE hits, scattered photons, and more.

AI/DL techniques allow more flexibilities in modeling individual 
PMT’s responses and help achieving better representation with 
finer details.

SR electron SR muon

arXiv:2202.01276

https://arxiv.org/abs/2202.01276


Towards a robust physics inference
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A conventional analysis pipeline
- Same physics factored into different parts, e.g. sequential 

simulation and calibration.
- Limited optimizability for simulation and data/MC 

discrepancies. 

Physics Generator 
(e.g. Geant4)

Detector 
Simulation

Tuning 
MC’s

Physics MC

Reconstruction 
Algorithm 

Calibration 
Data Physics Data

Tune

Reconstructed 
Data

Reconstructed MC

P
hysics 

A
nalysis

M
ax likelihood fit

White: physics domain
Grey: detector domain
Blue: connection of the two domains



Towards a robust physics inference
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Neural Network

Calibration Data Physics Data

Surrogate Model

P
hysics A

nalysis

Train/valid

Physics Generator 

Detector Simulation
Train

Improve

AI/DL-based analysis pipeline

- Optimizing the simulation as a whole with calibration data
- Explainable with well-understood physics while good 

approximation to complex features in real data with NN



Towards a robust physics inference
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US-Japan Science and Technology Cooperation Program
See P. Tsang’s talk!



Towards a robust physics inference
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Systematic error estimation is a popular 
and critical subject in the scientific 
applications of AI/DL techniques.

Exploring new ideas to improve the 
current working example of Cherenkov 
ring generator (arXiv:2202.01276).

Implementation of Bayesian Neural 
Network (BNN) is under investigation.

Work in progress by J. Potel, ILANCE

https://arxiv.org/abs/2202.01276
https://ilance.cnrs.fr/


Other applications of DL - neutron classification
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Neutrons freed from an Inverse Beta Decay (IBD) will 
be captured by a proton or Oxygen nucleus in ~200 μs 
after thermalization, releasing a ~2.2 MeV γ.

The same neutron capture with Gadolinium nucleus is 
much faster (~30 μs) and stronger signals (~8 MeV γ).

Detection threshold of SK is ~4 MeV.

The identification of IBD via neutron capture is a key to the 
search of Diffusive Supernova Neutrino Background (DSNB).

S. Han, Neutrino 2022

NN

80% efficiency and 98% purity of Gd(n,γ) 
achieved by NN in SK.

https://indico.kps.or.kr/event/30/contributions/460/


Other applications of DL - neutron classification
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Neutron mis-ID rate

DGCNN

GCN,

Various studies of different NN architectures ongoing for improving neutron capture detection efficiency 
with Gd-loaded IWCD simulation. 

IWCD Neutron Tagging, arXiv:2206.12954

Dynamic Graph Convolutional Neural Network (DGCNN, 
arXiv:1801.07829 ) and BDT (XGBoost, T. Chen and C. 
Guestrin) can achieve similar results and outperform Graph 
Convolutional Network (GCN, arXiv:1609.02907).

The dynamic grouping of the nearest pair of nodes in DGCNN 
allows the model to learn non-local feature in a graph, while 
the feature engineering of XGBoost provides great level of 
model interpretability.

https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2206.12954
https://arxiv.org/abs/1801.07829
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
https://arxiv.org/abs/1609.02907


Summary and Outlook
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● Neutrino physics with water Cherenkov detectors is entering the era of high precision:
○ Systematic uncertainties will become the dominant limits to achieve new discoveries.

● To better constrain the systematics, various deep learning techniques are under 
development and show great potential:
○ New methods also enable new studies such data-driven physics modelling 

● Simultaneously, fiTQun is being improved and generalized as well:
○ More fair comparisons around the corner!

● Software frameworks for DL is in place, welcoming application to all physics topics and 
further architecture development

WatChMaL.org



Appendix



The Standard Neutrino Oscillations
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Propagation of Hamiltonian (mass) state and detection in 
the weak interaction eigenstate causes flavor change -> 
Neutrino Oscillation

Oscillation probability is related to: 
●                        , where                           and 
● The mixing (PMNS) of the Hamiltonian eigenvectors



FiTQun reconstruction algorithm
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● In practice, “predicted charge” is first calculated: μ = μdir + μsct

which is used in the likelihood evaluation, where the direct light contribution is:

Cherenkov
emission profile

PMT solid 
angle

Light 
Attenuation

PMT angular 
response

● Particle ID 
information encoded 
here and extracted 
from likelihood 
comparison of 
different hypotheses

Integral over 
track length

Light 
yield

P. de Perio, NNN22

https://www-kam2.icrr.u-tokyo.ac.jp/event/13/contributions/637/


FiTQun reconstruction algorithm
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● In practice, “predicted charge” is first calculated: μ = μdir + μsct

which is used in the likelihood evaluation, where the direct light contribution is:

P. de Perio, NNN22

● Assuming 
direction-averaged 
Cherenkov profile

● Scattering table 
derived from 
uniformly distributed, 
isotropic low energy 
electrons

https://www-kam2.icrr.u-tokyo.ac.jp/event/13/contributions/637/


FiTQun reconstruction algorithm
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M. Wilking, 
DUNE Module of Opportunity Workshop

https://indico.fnal.gov/event/21535/timetable/?view=standard#8-theia-beam


Computing Time Improvement
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P. de Perio, NNN22

● Growing MC (and data) sample sizes in high precision era

● Event reconstruction becoming a computing time limiting factor
○ Especially in systematic error studies varying a large number of detector parameters

● fiTQun: ~90 seconds per event on CPU (for e, μ, π0 hypotheses in IWCD)
○  Multi-ring events >~5 minutes

● ResNet: ~6 ms per event on GPU (for classification and e, μ regression)

● Factor of 105 speed-up
○ But actual throughput will depend on how many GPUs you can afford

● Assuming the size and cost of the small CPU and GPU clusters at IPMU:
~ 5000x more throughput with the $ spent on GPUs instead 

https://www-kam2.icrr.u-tokyo.ac.jp/event/13/contributions/637/


Convolutional Neural Network (CNN)
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Input layer 
(input image)

Features
Diagram tool by 
Alex Lenail, NN-SVG

Convolutional 
kernel

Vincent Dumoulin, Francesco Visin 
(arXiv:1603.07285)

Downsampling

Fully connected layers

Non-linear 
activation function

Multiplicative 
weights

Additive 
biases

Output layer

https://alexlenail.me/NN-SVG/
https://arxiv.org/abs/1603.07285


PointNet 
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PointNet designed to work on ‘point clouds’ rather than 
images of pixels

● Each hit PMT is a ‘point’ with time, charge & position, 
not fixed to grid

● Convolution-like operations act on each point’s 
charge, time and position

● Learn global transformations applied to all points
● Single pooling layer from all points to 1D array
● Can apply to any detector geometry



Other applications of DL - solar neutrino classification
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Object: reduce radioactive background noise in low energy (a few MeV) solar 
neutrino events at SK.

A. Yankelevich, NuFact22

Sparse hits of low energy events 
are challenging for ResNet to 
extract features.

Performance also susceptible to 
noise model.

BDT trained on the reconstructed variables used in SK’s 
solar neutrino analyses outperform the traditional 
selection cuts 6x better.

https://indico.fnal.gov/event/53004/contributions/244482/


The Water Cherenkov Test Experiment (WCTE)
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Prototype detector for beam test at CERN in 2024

mPMT pilot run and test-bed for precision calibration and AI/DL
Opportunity to improve systems prior to IWCD and Hyper-K

Control samples to constrain neutrino experiment modeling
Immediate impact to existing experiments (T2K, Super-K)

p, e, π±, μ± (potentially 
tagged-γ) particle beam 
from 140-1200 MeV/c

CERN SPSC Proposal; Hadron production EOI

https://cds.cern.ch/record/2712416
http://cds.cern.ch/record/2771386

