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Structure of the Proton
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Figure 1: Three valance quarks in proton.

▶ Protons;
▶ Spin 1/2 fermions
▶ Composed of three valance quarks:

two up (u) quarks and one down (d)
quark

▶ Quarks are bound together by gluons
▶ Properties: mass, charge, spin etc.

→ 3 valance quarks ?



Structure of the Proton

1J. Ashman et al., Phys. Lett. B 206, ed. by V. W. Hughes, C. Cavata, 364 (1988).
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Figure 2: EMC result for the proton spin.1

▶ European Muon Collaboration (EMC):
▶ 1st measurement of the total spin of

the proton → “Spin Crisis”
▶ Quarks contributes only

14± 9± 21% of the proton spin
▶ What contributes to the proton spin

?



Structure of the Proton
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Figure 3: Spin Decomposition according to lattice
QCD.2
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∆Σ - contribution of the intrinsic spin of

the quarks and anti-quarks
∆G - contribution of the intrinsic spin of
the gluons
Lq,Lq̄,LG - contributions of the orbital
angular momentum of the valence quarks,
sea quarks, and gluons, respectively

https://arxiv.org/abs/2112.08416


Structure of the Proton
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Figure 4: Dynamic structure of the proton.

Figure 5: proton spin decomposition in terms of the
angular momentum.3

https://arxiv.org/abs/2112.08416


Structure of the Proton
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Figure 6: TMDs classification according to the
polarization of the quarks and nucleon.4

▶ Transverse momentum distributions
(TMDs): distributions of the hadron’s
quark or gluon momenta that are
perpendicular to the momentum
transfer between the beam and the
hadron

▶ Provide information on the confined motion of quarks and gluons inside
the hadron and complement the information on the hadron structure.

▶ Boer-Mulders (BM) function: transverse-polarization asymmetry of
quarks within an unpolarized hadron

https://arxiv.org/abs/1212.1701


Drell-Yan Process

5J.-C. Peng et al., Phys. Lett. B 789, 356–359, arXiv: 1808.04398 (hep-ph) (2019).
6K. Nagai, PhD thesis, Tokyo Inst. Tech, 2017.
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Figure 7: Diagram of the Collins-Soper frame.5

Figure 8: Drell-Yan process.6

dσ
dΩ ∝ 1+λ cos2 θ+µ sin 2θ cosϕ+1

2
ν sin2 θ cos 2ϕ

▶ Drell-Yan process → probing the
internal structure of hadrons

▶ Extraction of ν parameter → BM
function

https://arxiv.org/abs/1808.04398
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h⊥[C]
1 (x, k2T)ϵ

ij
TkTj =

M
2

F.T. ⟨P|ψ̄(0)Lc(0, ε)γ
iγ†γ5ψ(ε)|P⟩

▶ Describes the net polarization of
quarks inside an unpolarized proton

▶ Quarks can be polarized on average even inside an unpolarized proton,
as long as they are not moving exactly along the proton direction.

▶ If h⊥
1 ̸= 0 → then it reflects the presence of a handedness inside the

proton P · (kT × sT)

▶ h⊥
1 → quark distribution that quantifies a particular spin-orbit

correlation



Evidence for Non-zero BM Function

7L. Y. Zhu et al., Phys. Rev. Lett. 99, 082301, arXiv: hep-ex/0609005 (2007).
8V. Barone et al., Phys. Rev. D 81, 114026, arXiv: 0912.5194 (hep-ph) (2010).
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Figure 9: Parameter ν vs. pT for Drell-Yan process
in E866 experiment.7 Figure 10: HERMES proton-target data for SIDIS process.8

https://arxiv.org/abs/hep-ex/0609005
https://arxiv.org/abs/0912.5194
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▶ Fixed target Drell-Yan
experiment at Fermilab

▶ Use 120GeV beam energy from
the main injector

▶ Measure the antiquark structure
of the nucleon

▶ Provides unique access to the
vanishing sea quark density at
high x

▶ Data collection was concluded in
2017



SeaQuest/E906 Experiment
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Figure 11: SeaQuest/E906 spectrometer.9

https://arxiv.org/abs/1706.09990
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Figure 12: Top view of the detector and muon pair track.10

Figure 13: Targets used in the SeaQuest experiment.
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▶ The likelihood ratio test is a highly effective method for assessing the
goodness of fit.

▶ Let X1,X2,X3, . . . ,Xn be a random sample from a distribution with a
parameter θ. Suppose that we have observed
X1 = x1,X2 = x2, . . . ,Xn = xn. We define the the likelihood function as
the joint probability of the observed samples as a function of θ;

L(x1, x2, . . . , xn; θ) = P(X1 = x1,X2 = x2, . . . ,Xn = xn; θ)

▶ To decide between two simple hypotheses H0 : θ = θ0 and H1 : θ = θ1, we
define the likelihood ratio:

λ(x1, x2, . . . , xn) =
L(x1, x2, . . . , xn; θ0)

L(x1, x2, . . . , xn; θ1)



Likelihood Ratio Test
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▶ To perform a likelihood ratio test, we choose a constant c. We reject H0

if λ < c and accept it if λ ≥ c. The value of c can be chosen based on
the desired significance level α.

▶ Neural networks excel at approximating non-linear functions, making
them ideal for use as higher dimensional likelihood functions.

▶ Our goal is to train the neural network to classify samples accurately.
Specifically, we aim to classify samples ω0i ∈ Ω0 as y = 0 and ω1i ∈ Ω1 as
y = 1, regardless of the parameter θ.

▶ Subsequently, we can utilize the trained neural network to estimate any
unknown parameter θunknown by employing the gradient descent
algorithm.11

https://arxiv.org/abs/1907.08209


SeaQuest MC Data Generation

12L. Y. Zhu et al., Phys. Rev. Lett. 99, 082301, arXiv: hep-ex/0609005 (2007).
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▶ We generated the Monte Carlo
(MC) data using the PYTHIA
generator.

▶ The generated events were then
passed through the E906 detector
simulation (using GEANT4) to
obtain the reconstructed detector
information.

▶ We sample the values of λ, µ and
ν uniformly from the ranges of
(0.5, 1.5), (−0.5, 0.5), and (−0.5,
0.5), respectively.12

Figure 14: SeaQuest MC data is in good agreement with real
data.13

https://arxiv.org/abs/hep-ex/0609005
https://arxiv.org/abs/2103.04024


Deep Neural Network Architecture
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▶ The neural network consists of five hidden linear layers, each containing
64 nodes. The ReLU function is used to activate the hidden layers,
along with batch normalization layers. The final output is passed
through a Sigmoid activation function.

▶ During the training step, we use the following input features for the
neural network: mass, pT, xF, ϕ, cos θ, λ, µ, and ν.

▶ The neural network was trained for 200 epochs, employing early stopping
with a patience of 20, to minimize the binary cross-entropy loss.

▶ During the fitting step, we freeze all the weights and biases of the
trained neural network. Then, we employ the gradient descent algorithm
to determine the optimal values of λ, µ, and ν by minimizing the loss.



Fitting Step
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Figure 15: In the fitting step, the loss reaches its
minimum at the optimal value.

Figure 16: During the fitting step, all three
parameters reach the optimal value.



Testing DNN approach
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Combination Coefficient Injected Fitted
1 λ 0.84 0.876 ± 0.208

µ 0.26 0.234 ± 0.054
ν -0.34 -0.299 ± 0.052

2 λ 1.33 1.134 ± 0.151
µ 0.17 0.146 ± 0.050
ν -0.34 -0.281 ± 0.043

3 λ 1.12 1.242 ± 0.181
µ -0.27 -0.211 ± 0.088
ν -0.24 -0.236 ± 0.071

Table 1: Table showing the mean and standard deviation of fitted values of λ, µ, and ν
using the gradient descent algorithm with different model initialization.

▶ Independent events
from training data →
to reduce the biases

▶ 3 test sample →
extract the injected
parameters within a
±1.5 standard
deviation (σ) interval
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▶ Understanding the background from the experiment data is really
important

▶ Full background simulations → computationally expensive
▶ Variational autoencoders;

▶ Generative model → can generate new events based on the trained events
▶ Computation is fast → use of GPUs
▶ Can use a higher-dimension inputs
▶ Control over the reconstruction error can be achieved using KL

divergence
▶ Trained VAE → background subtracted events → un-binned method



Combinatorial Background

14S. F. Pate et al., arXiv: 2302.04152 (hep-ex) (Feb. 2023).
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Figure 17: Mix and un-mixed events.

▶ We use an event-mixing method
to estimate the combinatoric
background from the SeaQuest
data.14

▶ To remove the combinatorial
background, we employ histogram
subtraction → binned method,
which does not scale well in
higher dimensions

▶ Our goal is to utilize Variational Autoencoders (VAEs) for generating
background-subtracted distributions.15

▶ VAE generated distribution → fitting algorithm → λ, µ, ν

https://arxiv.org/abs/2302.04152


VAEs

24 / 27Figure 18: Example of VAE network.

▶ Enforce the latent space to
be Gaussian-like

▶ Generate noise vector in
latent space → decode to
generate sample

▶ Inputs: mass, pT, xF, ϕ,
cos θ

▶ Both the encoder and
decoder have 3 hidden
layers, each containing 64
nodes activated by the
ReLU activation function.

▶ The latent dimension is 3.



VAE Generated Events

25 / 27

Early result → enhance the
prediction accuracy using
diffusion models/
conditional VAEs.



Future Trajectory

16S. Diefenbacher et al., JINST 15, P11004, arXiv: 2009.03796 (hep-ph) (2020).
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▶ Systematic study of the fitting algorithm to better understand the phase
space variables.

▶ Increase the precision of the fitting algorithm using VAE/GAN.16

▶ Increase the accuracy of the prediction for background-subtracted events
with Diffusion/CVAE models.

https://arxiv.org/abs/2009.03796
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▶ Spin of the proton → intrinsic property → explain the structure of the
proton

▶ BM function → transverse-polarization asymmetry of quarks within an
unpolarized hadron

▶ Neural networks → multi-dimensional likelihood functions → likelihood
ratio test to extract the optimal parameters for the Drell-Yan angular
distribution.

▶ VAEs → generate distributions with background removed.
▶ Our plan is to use this high-dimensional fitting algorithm with VAE

generated events to extract the Drell-Yan angular coefficients from the
E906/SeaQuest data with higher accuracy.

▶ Acknowledgement: This work was funded by the DOE office of Science,
Medium-Energy Nuclear Physics Program.
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