Extracting the $\cos 2 \phi$ Asymmetry in the Drell-Yan process using Deep Neural Networks

Dinupa Nawarathne
New Mexico State University
Representing the E906/SeaQuest Collaboration

NPML2023 - August 24, 2023

Table of Contents

Motivation
Structure of the Proton
Drell-Yan Process

SeaQuest/E906 Experiment
Deep Neural Networks for Extracting the $\cos 2 \phi$ Asymmetry in the Drell-Yan process

Likelihood Ratio fit Method with Deep Neural Networks
SeaQuest MC Data Generation
Variational Autoencoders to Remove Combinatorial Background Events

Summary

Structure of the Proton

- Protons;
- Spin $1 / 2$ fermions
- Composed of three valance quarks: two up (u) quarks and one down (d) quark
- Quarks are bound together by gluons
- Properties: mass, charge, spin etc. $\rightarrow 3$ valance quarks ?

Figure 1: Three valance quarks in proton.

Structure of the Proton

- European Muon Collaboration (EMC):

Figure 2: EMC result for the proton spin. ${ }^{1}$

- $1^{\text {st }}$ measurement of the total spin of the proton \rightarrow "Spin Crisis"
- Quarks contributes only $14 \pm 9 \pm 21 \%$ of the proton spin
- What contributes to the proton spin ?

[^0]
Structure of the Proton

```
K.-F. Liu et al
arXiv:1203.6388
```



```
■ \(L^{u+d}\)
\(-L^{\bar{u}+\bar{d}}\)
\(\square L^{s+\bar{s}}\)
\(\square J^{g}\)
- \(\left.\frac{\Delta \Sigma}{2}\right|^{u+d+s}\)
\(\Delta \Sigma_{q} \approx 25 \%\)
\(2 \mathrm{~L}_{q} \approx 50 \%\) (4\% (valence) \(+46 \%\) (sea) \()\)
\(2 \mathrm{~J}_{\mathrm{g}} \approx 25 \%\)
```

Figure 3: Spin Decomposition according to lattice QCD. ${ }^{2}$

[^1]
Structure of the Proton

Figure 4: Dynamic structure of the proton.

Figure 5: proton spin decomposition in terms of the angular momentum. ${ }^{3}$

[^2]
Structure of the Proton

- Transverse momentum distributions (TMDs): distributions of the hadron's quark or gluon momenta that are perpendicular to the momentum transfer between the beam and the hadron

Figure 6: TMDs classification according to the polarization of the quarks and nucleon. ${ }^{4}$

- Provide information on the confined motion of quarks and gluons inside the hadron and complement the information on the hadron structure.
- Boer-Mulders (BM) function: transverse-polarization asymmetry of quarks within an unpolarized hadron

[^3]
Drell-Yan Process

Figure 8: Drell-Yan process. ${ }^{6}$

- Drell-Yan process \rightarrow probing the internal structure of hadrons
- Extraction of ν parameter $\rightarrow \mathrm{BM}$ function

$$
\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{1}{2} \nu \sin ^{2} \theta \cos 2 \phi
$$

Figure 7: Diagram of the Collins-Soper frame. ${ }^{5}$

[^4]
Boer-Mulders Function (h_{1}^{\perp})

$$
h_{1}^{\perp[C]}\left(x, k_{T}^{2}\right) \epsilon_{T}^{i j} k_{T_{j}}=\frac{M}{2} F . T .\langle P| \bar{\psi}(0) \mathcal{L}_{c}(0, \varepsilon) \gamma^{i} \gamma^{\dagger} \gamma_{5} \psi(\varepsilon)|P\rangle
$$

- Describes the net polarization of quarks inside an unpolarized proton
- Quarks can be polarized on average even inside an unpolarized proton, as long as they are not moving exactly along the proton direction.
- If $h_{1}^{\perp} \neq 0 \rightarrow$ then it reflects the presence of a handedness inside the proton $P \cdot\left(k_{T} \times s_{T}\right)$
- $h_{1}^{\perp} \rightarrow$ quark distribution that quantifies a particular spin-orbit correlation

Evidence for Non-zero BM Function

HERMES Proton

Figure 10: HERMES proton-target data for SIDIS process. ${ }^{8}$
${ }^{7}$ L. Y. Zhu et al., Phys. Rev. Lett. 99, 082301, arXiv: hep-ex/0609005 (2007).
${ }^{8}$ V. Barone et al., Phys. Rev. D 81, 114026, arXiv: 0912.5194 (hep-ph) (2010).

SeaQuest/E906 Experiment

- Fixed target Drell-Yan experiment at Fermilab
- Use 120 GeV beam energy from the main injector
- Measure the antiquark structure of the nucleon
- Provides unique access to the vanishing sea quark density at high x
- Data collection was concluded in
 2017

SeaQuest/E906 Experiment

SeaQuest/E906 Experiment

Figure 12: Top view of the detector and muon pair track. ${ }^{10}$

Trigger Name	Target	Hodoscope side	P_{I} cut	Prescale factor
FPGA-1	$\mu^{+} \mu^{-}$	TB or BT	-	1
FPGA-2	$\mu^{+} \mu^{-}$	TT or BB	-	10000
FPGA-3	$\mu^{+} \mu^{+}$or $\mu^{-} \mu^{-}$	TB or BT	-	123
FPGA-4	μ^{+}or μ^{-}	T or B	-	25461
FPGA-5	μ^{+}or μ^{-}	T or B	$>3 \mathrm{GeV}$	2427
NIM-1	μ^{+}or μ^{-}	T or B	-	31991
NIM-3	-	-	-	125

Figure 13: Targets used in the SeaQuest experiment.

[^5]Analysis Procedure

Analysis Procedure

Likelihood Ratio Test

- The likelihood ratio test is a highly effective method for assessing the goodness of fit.
- Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ be a random sample from a distribution with a parameter θ. Suppose that we have observed $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}$. We define the the likelihood function as the joint probability of the observed samples as a function of θ;

$$
\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n} ; \theta\right)
$$

- To decide between two simple hypotheses $H_{0}: \theta=\theta_{0}$ and $H_{1}: \theta=\theta_{1}$, we define the likelihood ratio:

$$
\lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta_{0}\right)}{\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta_{1}\right)}
$$

Likelihood Ratio Test

- To perform a likelihood ratio test, we choose a constant c. We reject H_{0} if $\lambda<c$ and accept it if $\lambda \geq c$. The value of c can be chosen based on the desired significance level α.
- Neural networks excel at approximating non-linear functions, making them ideal for use as higher dimensional likelihood functions.
- Our goal is to train the neural network to classify samples accurately. Specifically, we aim to classify samples $\omega_{0 i} \in \Omega_{0}$ as $y=0$ and $\omega_{1 i} \in \Omega_{1}$ as $y=1$, regardless of the parameter θ.
- Subsequently, we can utilize the trained neural network to estimate any unknown parameter $\theta_{\text {unknown }}$ by employing the gradient descent algorithm. ${ }^{11}$

[^6]
SeaQuest MC Data Generation

- We generated the Monte Carlo (MC) data using the PYTHIA generator.
- The generated events were then passed through the E906 detector simulation (using GEANT4) to
 obtain the reconstructed detector information.
- We sample the values of λ, μ and ν uniformly from the ranges of $(0.5,1.5),(-0.5,0.5)$, and $(-0.5$, $0.5)$, respectively. ${ }^{12}$

Figure 14: SeaQuest MC data is in good agreement with real ${ }^{12}$ L. Y. Zhu et al., Phys. Rev. Lett. 99, 082301, arXiv: hep-ex/060. ${ }^{13}$ data
${ }^{13}$ J. Dove et al., Nature 590, [Erratum: Nature 604, E26 (2022)], 561-565, arXiv: 2103.04024 (hep $\left.\rightarrow \mathrm{ph}\right)$ (2021). $\bar{\equiv}$,

Deep Neural Network Architecture

- The neural network consists of five hidden linear layers, each containing 64 nodes. The ReLU function is used to activate the hidden layers, along with batch normalization layers. The final output is passed through a Sigmoid activation function.
- During the training step, we use the following input features for the neural network: mass, $p_{T}, x_{F}, \phi, \cos \theta, \lambda, \mu$, and ν.
- The neural network was trained for 200 epochs, employing early stopping with a patience of 20 , to minimize the binary cross-entropy loss.
- During the fitting step, we freeze all the weights and biases of the trained neural network. Then, we employ the gradient descent algorithm to determine the optimal values of λ, μ, and ν by minimizing the loss.

Fitting Step

Figure 15: In the fitting step, the loss reaches its minimum at the optimal value.

Figure 16: During the fitting step, all three parameters reach the optimal value.

Testing DNN approach

Combination	Coefficient	Injected	Fitted
1	λ	0.84	0.876 ± 0.208
	μ	0.26	0.234 ± 0.054
	ν	-0.34	-0.299 ± 0.052
2	λ	1.33	1.134 ± 0.151
	μ	0.17	0.146 ± 0.050
	ν	-0.34	-0.281 ± 0.043
3	λ	1.12	1.242 ± 0.181
	μ	-0.27	-0.211 ± 0.088
	ν	-0.24	-0.236 ± 0.071

- Independent events from training data \rightarrow to reduce the biases
- 3 test sample \rightarrow extract the injected parameters within a ± 1.5 standard deviation (σ) interval

Table 1: Table showing the mean and standard deviation of fitted values of λ, μ, and ν using the gradient descent algorithm with different model initialization.

Combinatorial Background

- Understanding the background from the experiment data is really important
- Full background simulations \rightarrow computationally expensive
- Variational autoencoders;
- Generative model \rightarrow can generate new events based on the trained events
- Computation is fast \rightarrow use of GPUs
- Can use a higher-dimension inputs
- Control over the reconstruction error can be achieved using KL divergence
- Trained VAE \rightarrow background subtracted events \rightarrow un-binned method

Combinatorial Background

- We use an event-mixing method to estimate the combinatoric background from the SeaQuest data. ${ }^{14}$
- To remove the combinatorial background, we employ histogram subtraction \rightarrow binned method, which does not scale well in higher dimensions

Figure 17: Mix and un-mixed events.

- Our goal is to utilize Variational Autoencoders (VAEs) for generating background-subtracted distributions. ${ }^{15}$
- VAE generated distribution \rightarrow fitting algorithm $\rightarrow \lambda, \mu, \nu$

[^7]
VAEs

- Enforce the latent space to be Gaussian-like
- Generate noise vector in latent space \rightarrow decode to generate sample
- Inputs: mass, p_{T}, x_{F}, ϕ, $\cos \theta$
- Both the encoder and decoder have 3 hidden layers, each containing 64 nodes activated by the ReLU activation function.
- The latent dimension is 3 .

VAE Generated Events

Early result \rightarrow enhance the prediction accuracy using diffusion models/ conditional VAEs.

Future Trajectory

- Systematic study of the fitting algorithm to better understand the phase space variables.
- Increase the precision of the fitting algorithm using VAE/GAN. ${ }^{16}$
- Increase the accuracy of the prediction for background-subtracted events with Diffusion/CVAE models.

[^8]
Summary

- Spin of the proton \rightarrow intrinsic property \rightarrow explain the structure of the proton
- BM function \rightarrow transverse-polarization asymmetry of quarks within an unpolarized hadron
- Neural networks \rightarrow multi-dimensional likelihood functions \rightarrow likelihood ratio test to extract the optimal parameters for the Drell-Yan angular distribution.
- VAEs \rightarrow generate distributions with background removed.
- Our plan is to use this high-dimensional fitting algorithm with VAE generated events to extract the Drell-Yan angular coefficients from the E906/SeaQuest data with higher accuracy.
- Acknowledgement: This work was funded by the DOE office of Science, Medium-Energy Nuclear Physics Program.

[^0]:

[^1]: ${ }^{2}$ K.-F. Liu, AAPPS Bull. 32, 8, arXiv: 2112.08416 (hep-lat) (2022).

[^2]: ${ }^{3}$ K.-F. Liu, AAPPS Bull. 32, 8, arXiv: 2112.08416 (hep-lat) (2022).

[^3]:

[^4]: ${ }^{5}$ J.-C. Peng et al., Phys. Lett. B 789, 356-359, arXiv: 1808.04398 (hep-ph) (2019).
 ${ }^{6}$ K. Nagai, PhD thesis, Tokyo Inst. Tech, 2017.

[^5]: ${ }^{10}$ K. Nagai, PhD thesis, Tokyo Inst. Tech, 2017.

[^6]: ${ }^{11}$ A. Andreassen, B. Nachman, Phys. Rev. D 101, 091901, arXiv: 1907.08209 (hep-ph) (2020).4 (

[^7]: ${ }^{14}$ S. F. Pate et al., arXiv: 2302.04152 (hep-ex) (Feb. 2023).
 ${ }^{15}$ D. P. Kingma, M. Welling, arXiv preprint arXiv:1312.6114 (2013).

[^8]: ${ }^{16}$ S. Diefenbacher et al., JINST 15, P11004, arXiv: 2009.03796 (hep-ph) (2020).

