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• Short about HPGe Detectors
• Pulse Shape Analysis (PSA)
• Feature Importance Supervision (FIS)
• Application to Germanium Signals
• Further possibilities by FIS
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Short about HPGe Detectors
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Main Task to keep in Mind: 
Discriminate MSE (one background-
type) from SSE (signal-like)

● Good requirements 
for Pulse Shape 
Analysis

● Classic analysis is 
done by A/E
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Pulse Shape Analysis
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• hj

Keep in Mind: 
DEP: Signal like | FEP/SEP: bkg dominated | Continuum: Mixed

All peaks at different energies 

SSE

MSE
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Pulse Shape Analysis
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Classic A/E Analysis:

But does it work with Machine Learning too?

In General: 
1. Determine some kind of 
classifier

2. Set cut on classifier at 90% 
survival fraction in DEP 

DEP

FEP
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Waveform Energy Dependence
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• Model can classify by using energy, not pulse shape
• Result shall be right for the right reasons

~ energy = 1

 Energy dependent

Keep in Mind: 

Baseline & tail 
contain energy 
information Independent of energy
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Switch to the other Side: Machine Learning
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What’s the idea behind Feature Importance Supervision (FIS?)

• Using human knowledge about important and unimportant 
features

• Lead the model to take right decisions



8

Visual Feature Importance Supervision

K
a
th

a
ri

n
a
 K

ilg
u
s 

 |
  

Fe
a
tu

re
 I
m

p
o
rt

a
n
ce

 S
u
p
e
rv

is
io

n
  
| 

 0
8

/2
5

/2
3

https://arxiv.org/pdf/2206.11212.pdf

Zhuofan Ying, Peter Hase, and Mohit Bansal
Department of Computer Science
University of North Carolina at Chapel Hill

● VisFIS used for Visual Question Answering
● Use different variations of the input image
● Calculate a loss function for every variation
● Train with a combined loss function  

https://arxiv.org/pdf/2206.11212.pdf


9

K
a
th

a
ri

n
a
 K

ilg
u
s 

 |
  

Fe
a
tu

re
 I
m

p
o
rt

a
n
ce

 S
u
p
e
rv

is
io

n
  
| 

 0
8

/2
5

/2
3

Goal: Given the full task input, the 
model shall return an accurate 
output.

Method: Feed into model and train 
model by using known label y.

Adaption to 
Ge Signals
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Goal: Subset of input containing 
the important features shall be 
sufficient to produce accurate 
output. 

Method: Feed into model and train 
model by using known label y (as 
with the original input)

Adaption to 
Ge Signals
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Goal: Subset of input containing 
just unimportant features shall 
result in total uncertainty. 

Method: Feed into model and 
train model by using a random 
number as label.

Adaption to 
Ge Signals
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Goal: Model shall be 
invariant under important 
features + random 
sampling of unimportant 
features.

Method: Using input with 
important and unimportant 
features, train to same 
result as just with important 
input. 

Adaption to 
Ge Signals
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CNN & RNN+attention model
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– Necessary to calculate 
vanilla gradient as 
explanation metric

• RNN+attention:
– Attention score intrinsic to 

model, leads direct to 
explanation metric
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Goal: Want an alignment 
between human and model 
feature importance. 

Method: Train model to result 
explanation metric e of the 
model having the same shape 
as human explanation ē.

Explanation Metric: 
- Vanilla Gradient for CNN
- Attention score for 
RNN+attention

Adaption to 
Ge Signals
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Overview about FIS model
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Accurate Output Accurate Output Uncertain Output Same Output
as Important Features

All Features Important Unimportant Important + 
Unimportant

Human Feature
Importance

Model 
Importance

Task Loss Sufficient Loss Uncertain Loss Invariant Loss Alignment Loss

About the 
explanation metric

Add all together 
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Training Setup
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• Using characterization 
measurements

• Compare 4 Versions: 
– A/E as non-ML analysis

– RNN wo FIS  

– CNN as a basic model

– RNN+attention as an 
advanced model

a) training peaks (DEP as signal type, SEP as bkg type) 
b) check for energy dependence
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Classification power
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3Model performance Check for energy dependence

→ models with FIS are energy independent

→ RNN + FIS seem to perform very well
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Training results of FIS
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Human Input: CNN: 

RNN+
attention: 

Machine Output:
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Spectrum after cuts
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peak DEP SEP Qbb

type signal bkg mixed

A/E 90% 7% 29%

RNN 90% 5% 33%

CNN
+FIS

90% 36% 60%

RNN
+FIS

90% 6% 33%
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Further possibilities by FIS
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• Adding more physical 
knowledge 
– Starting point
– Point of maximal A
– …?

• 2nd version of Human FI
• Other versions possibles
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Further possibilities by FIS
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Work in Progress!

peak DEP SEP Qbb

type signal bkg mixed

A/E 90% 7% 29%

RNN
+FIS

90% 6% 33%

V2 
RNN
+FIS 

90% 10% 35%
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Further possibilities by FIS
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• Use FIS for other PSA tasks
• Focussing on different part of 

the waveform, depending on 
the task
– Surface events (alphas, betas)
– Pile-up events
– Position reconstruction
– ...

pile-up 
events

MSE/
SSE

surface 
events
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Summary
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• Possible to remove energy dependence
• RNN better than CNN
• RNN+FIS close to A/E
• Still some differences to investigate
• Further steps:
– Check behaviour in compton shoulder
– Investigate model performance on low-background physics data
– FIS for other classes of events

More Questions? Klick here to send an eMail

mailto:katharina.kilgus@uni-tuebingen.de
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Backup
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Rise time
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• https://doi.org/10.1140/epjc/s10052-021-09184-8
• Depends on position inside detector (short RT close to p+ 

contact)

https://doi.org/10.1140/epjc/s10052-021-09184-8
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Backup
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Backup
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