DEEP LEARNING IN VOXELISED NEUTRINO DETECTORS

Dr. Saúl Alonso-Monsalve ETH Zurich

Neutrino Physics and Machine Learning (NPML 2023) 22 August 2023

The physics case

- Goal: develop an analysis strategy that does not depend on the neutrino interaction model for 3D granularity detectors.
- Case study: a detector concept analogous to the SuperFGD detector from the T2K experiment.
 - Part of the upgrade of the near detector (ND280) of the T2K experiment in Japan.
 - Full-active fine-grained scintillator (FGD) with three views.
 - 2M optically independent cubes, 1 cm³ per cube.
 - Spatial localisation of scintillation light.

JINST 13 (2018) 02, P02006 NIM A936 (2019) 136-138

Reconstruction approach

- Goal: develop an analysis strategy that does not depend on the neutrino interaction model:
 - a) Algorithms to reject noise and identify single vs multi-primary-particle hits.
 - b) Algorithms to fit the trajectory of singleparticle objects.
 - c) Algorithms to understand the activity at the vertex of neutrino interactions.

- a) Hit identification.
- b) Particle trajectory fitting.
- c) Vertex activity fitting.

a) Hit identification.

- b) Particle trajectory fitting.
- c) Vertex activity fitting.

Hit identification: noise and ambiguity rejection

- Non-physical voxels appear due to a lack of information during the 2D to 3D reconstruction, called ghost voxels.
- Cubes with a real deposition but where no track has passed through it, called crosstalk voxels.
- Approach: use Graph Neural Networks (GNNs) to identify those voxels:
 - Example of variables representing each hit: number of photoelectrons deposited in each plane, multiplicity in each plane, etc.
 - The algorithm chosen was GraphSAGE (*arXiv:1706.02216*).
 - In GraphSAGE, each node neighbourhood defines a computation graph (in our example, each voxel is connected to other voxels within a 1.75 cm radius).

		GENIE Training			
	GENIE Testing	Efficiency Purity	Track 94% 96%	xTalk 94% 91%	Ghost 88% 92%
	Pgun* Testing	Efficiency Purity	Track 95% 98%	xTalk 94% 89%	$\begin{array}{c} \text{Ghost} \\ 85\% \\ 92\% \end{array}$

Hit identification: single vs multi-particle hits

- Classify each individual hit as:
 - **Single-particle hit**: only one particle passes through the hit cube.
 - Multiple-particle hit: at least two different particles pass through the hit cube.
 - Other: crosstalk or ghost.
- Using a submanifold sparse U-Net-based neural network architecture (<u>https://arxiv.org/abs/1706.01307</u>).
 - More computationally efficient than standard CNNs.
- Efficiencies:

	True multi-particle	True single-particle	True other
Pred. multi-particle	0.7777	0.1511	0.0711
Pred. single-particle	0.0055	0.9654	0.0291
Pred. other	0.0079	0.0479	0.9442

• Excellent single-particle isolation accuracy allows running a further NN-based track trajectory fitting on single particles, relying on detailed MC simulations of single particles.

- a) Hit identification.
- b) Particle trajectory fitting.
- c) Vertex activity fitting.

Fitting of the particle trajectory

- The next step is to predict the trajectory of particles based on single-particle hit information.
- For each state, we consider the 3D position and energy deposition of the hit.

- Input hit state: $\vec{S}_{in,i} = (x_i, y_i, z_i, E_i), i = 1, \dots, N$.
- Output node state: $\vec{S}_{out,i} = (x_i, y_i, z_i, E_i), i = 1, \dots, N$.
- Use neural network to construct the map: $\{\vec{S}_{in,i}\} \rightarrow \{\vec{S}_{out,i}\}$

True track

- Implemented a recurrent neural network (RNN), a Transformer (encoder), and a sequential-importance-resampling particle filter (SIR-PF).
 - We treat each particle as a sequence of hits, benefiting from the success of RNN and Transformer in Natural Language Processing (NLP).

Workflow

Details

60

80

- Each algorithm outputs the fitted 3D trajectory point for each input hit.
 - SIR-PF: first reconstructed hit used as prior (average of forward and backward filterings), sample propagation through the following 15 hits. The likelihood relies on a precomputed 5-dimensional histogram.
 - **RNN**: five bi-directional GRU layers, 50 hidden units each.
 - Transformer: 5 encoder layers, 8 heads, hidden size of 64.
- Main results (*Commun. Phys 6, 119 (2023)*):

>30% better transformer resolution compared to the SIR-PF

• The improved trajectory fitting significantly improves the charge reconstruction, PID by range, and momentum by curvature.

- a) Hit identification.
- b) Particle trajectory fitting.
- c) Vertex activity fitting.

Vertex activity: standard fitting method

- Vertex activity (VA): particles releasing their energy in the proximity of the neutrino interaction vertex but that do not show visible tracks from where the kinematics can be reconstructed.
 - A "blob" of scintillation light is observed.
- Standard VA fitting method:
 - Goal: build the neutrino VA in forward folding from the sum of single particle reconstructed objects.
 - Particle information to reconstruct: # of particles (mostly protons), energy, direction, vertex position.
 - Method: likelihood fitting.
 - 1. Simulating any possible combination of the VA parameters and build VA.
 - 2. Finding the VA 3D image (e.g. SFGD hits) that "best fits" the data and find the "best-fit" parameters.

- The fitting method is highly computationally expensive.
 - Requires a large number of combinations of parameters to be simulated.
 - Unfeasible in practice.

- Advantages:
 - Studying systematics directly from single-particle data (e.g., beam test)
 - Allowing to set confidence intervals on the fitted VA parameters.

VA fitting transformer results (I)

• Number of protons:

- Testing on events with 1-5 protons.
- The algorithm predicts the correct number of particles in each event with ~65% acc.
- It predicts the correct number of particles with 98% acc. assuming an error of \pm 1 particle.
- Missed protons have on average a $KE \le 10$ MeV.

• Kinetic energy:

- Testing events with protons of a KE up to 60
 MeV (uniform distribution).
- Better resolution for high-energy events.
- Standard deviation ~7 MeV on average (resolution ~11%).

VA fitting transformer results (II)

- **Direction** (in spherical coordinates):
 - Isotropic testing events.
 - Symmetric results for both θ and Φ.
 - Better results for longer particles (as expected).

- The GAN-based fitting allows us to improve the reconstructed kinematics (e.g., 11% KE resolution improvement).
 - Work in progress!

• Vertex position:

- Testing protons starting randomly within a 3x3x3 cube area.
- Always guessing the right cube (>98% of the cases).
- 3D average distance between true and reco vertex of ~4 mm (~2.4 mm per coordinate).

Summary

- Deep learning could be a key tool for event reconstruction in voxelised detectors.
 - In particular, in detectors that provide fine details of the interaction but are hard to analyse using traditional methods.
- Successful application to different problems, such as:
 - Hit identification.
 - Track fitting.
 - Vertex activity understanding.
- The developed strategy allows us to attack the problem of systematic uncertainties and use the details of MC detector simulations more confidently.
- Future work requires an extensive validation of the methods and application to experimental data.

DEEP LEARNING IN VOXELISED NEUTRINO DETECTORS

Dr. Saúl Alonso-Monsalve ETH Zurich

Neutrino Physics and Machine Learning (NPML 2023) 22 August 2023