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MiniBooNE was a short baseline neutrino experiment

● Booster Neutrino Beam (BNB) at Fermilab
● Scintillator-based Cherenkov detector

The MiniBooNE Low Energy Excess
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600 MeV



MiniBooNE observed excess of “electron-like” neutrino events (LSND-like)

The MiniBooNE Low Energy Excess
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PhysRevD.103.052002

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

4.8 sigma excess…

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052002


Potential interpretation: excess of ν
e
 in the BNB ?

The MiniBooNE Low Energy Excess
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Peak: ~500 km/GeV

Peak: 1.6e4 km/GeV



Potential interpretation: excess of ν
e
 in the BNB ?

● In isolation, might be explained by >1 new sterile ν eigenstate(s)

The MiniBooNE Low Energy Excess
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Peak: ~1 km/GeV



Potential interpretation: excess of ν
e
 in the BNB ?

● In isolation, might be explained by >1 new sterile ν eigenstate(s)

The MiniBooNE Low Energy Excess
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Peak: ~1 km/GeV



Other interpretation: we just don’t understand neutrino cross-sections…

The MiniBooNE Low Energy Excess
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Low-energy 
“electron-like” events 
dominated by νμ NC-γ 
and CC-π0 background

PhysRevD.103.052002
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4.8 sigma excess…

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052002


MiniBooNE’s limitations: Cannot tell electrons from photons

The MiniBooNE Low Energy Excess
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Single e and single-γ 
events indistinguishable

π0 →γγ events 
indistinguishable from e 
if one gamma missing

μ/e separation reliable

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Advantages:

● Detailed: mm-scale 

resolution (wire 

pitch, readout freq.)

● Calorimetry
● Dense: high rate of ν 

interactions

● Scalable: detector 

up to O(10) kt

LArTPCs chosen as the 

beam ν detector in the 

US for the next 20 years

LAr Time Projection Chamber (LArTPC)
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The Resolution Power of LArTPC Images
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νμ



The Resolution Power of LArTPC Images
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EM Shower
Track

Distinguishes between 
tracks and showers
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The Resolution Power of LArTPC Images

12

Distinguishes between low 
and high ionization rates

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Minimum 
ionizing

Highly 
ionizing



The Resolution Power of LArTPC Images
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EM Shower

Resolves γ conversion gap 
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Suite of three LArTPCs at three short baselines

● Leverages e-γ separation power of LArTPCs to resolve MiniBooNE anomaly
● Perfect baseline for hypothetical short baseline oscillations
● Large number of ν-Ar events for a breadth of XS measurements
● Technological test bed for DUNE

The Short Baseline Neutrino (SBN) Program
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Challenges in LArTPCs

Dense medium → Slow

Electron drift velocity O(1) mm/μs

● Long (O(1) ms) readout window
● Need light association for timing

15

High Z material → Messy  

Argon has a large nucleus (Z=18)

● Complicated nuclear physics

● Secondary interactions

ICARUS simulation

νμ

μ-

νμ(4 GeV) + Ar → Λ K0
L
 μ- π+ π0 π0

ICARUS simulation

Primary Secondary
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Realistic BNB νμ + Cosmic ICARUS simulation as a benchmark

● One νμ 
+ Ar interaction/image

● ~25 cosmic interactions/image

LArTPC Simulation Test Case

16

– TPC boundaries
Color: particle instance ID

ICARUS simulation νμ
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Hierarchical Feature Extraction

What is relevant to pattern recognition in a detailed interaction image?
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Input

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Hierarchical Feature Extraction
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Input 1

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Hierarchical Feature Extraction
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Input 1+2

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Hierarchical Feature Extraction

20

Input 1+2 3

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)

4. Cluster interactions, identify particle properties in context

Hierarchical Feature Extraction
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Input 1+2 3 4

e-

p+

p+π+

1 GeV νe
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Hierarchical Feature Extraction
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e-

p+π+

→ Pixel-level

→ Cluster-level

p+

431+2Input 1 GeV νe

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)

4. Cluster interactions, identify particle properties in context

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Pixel-Level Feature Extraction
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UResNet (UNet + ResNet + Sparse Conv.) as the backbone feature extractor

Input Features

Paper: PhysRevD.102.012005

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://github.com/NVIDIA/MinkowskiEngine
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Tomographic Reconstruction
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In a wire TPC, we do not get 3D images, but rather 3 x 2D projections

● First task: combine projections into one 3D image

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS Data



Tomographic Reconstruction
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In a wire TPC, we do not get 3D images, but rather 3 x 2D projections

● First task: combine projections into one 3D image

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Make all valid 
combinations 
of 2 plane hits

ICARUS simulation

ICARUS Data



Tomographic Reconstruction
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In a wire TPC, we do not get 3D images, but rather 3 x 2D projections

● First task: combine projections into one 3D image

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS simulationICARUS simulation

Remove 
artifacts with 
UResNet



Tomographic Reconstruction
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In a wire TPC, we do not get 3D images, but rather 3 x 2D projections

● First task: combine projections into one 3D image

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS simulation

BNB νμ  only

98.7% overall



Semantic Segmentation
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Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS simulation ICARUS simulation

Classify voxels 
into categories 
with UResNet



Semantic Segmentation

29

Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Pa
pe

r: 
Ph

ys
Re

vD
.1

02
.0

12
00

5

BNB νμ  only

ICARUS simulation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 99.1% overall

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Points of Interest
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The Point Proposal Network 

(PPN) uses decoder features

• Three CCN layers to 

narrow ROI

• Last layer reconstructs:

• Relative position to 

voxel center of 

active voxel

• Point type

• Post-processing 

aggregates nearby points Paper: PhysRevD.104.032004

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


Points of Interest
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Narrow down a region proposal all the way to a point 

● Predict masks at different scales with UResNet, predict position in voxel

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS simulation ICARUS simulation

Identify end 
points of tracks, 
shower starts



Points of Interest
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Narrow down a region proposal all the way to a point 

● Predict masks at different scales with UResNet, predict position in voxel
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00

4

ICARUS simulation

1 voxel = 3x3x3 mm3

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

BNB νμ  only

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


Clustering Strategy
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At this point, we must do away with pixel-level predictions

● Number of target clusters: unknown
● Cluster label: non-unique (permutation-invariant)



Clustering Strategy
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At this point, must do away with pixel-level predictions

● Number of target clusters: unknown
● Cluster label: non-unique (permutation-invariant)

Density based clustering (DBSCAN)?



Clustering Strategy
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At this point, must do away with pixel-level predictions

● Number of target clusters: unknown
● Cluster label: non-unique (permutation-invariant)

Density based clustering (DBSCAN)? Yes, but…

1. How to break tracks?

→ Dense problem



Spatial Embedding
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First: learn a transformation to a separable space



Spatial Embedding

37ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

First: learn a transformation to a separable space

Track cluster labels

ICARUS simulation



Spatial Embedding
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First: learn a transformation to a separable space

Track cluster labels
Track cluster labels in 
embedding space (learned)

ICARUS simulation ICARUS simulationICARUS simulation

Track cluster labels

Map to 
embedded 
space with 
UResNet



Graph-SPICE
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Second: learn a smart version of DBSCAN (connected components)



Dense Fragment Formation
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Break track/shower fragment instances where they touch

● Cluster track/shower fragments at this stage

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS simulation ICARUS simulation

Classify voxels 
into categories 
with UResNet

Fragments



Dense Fragment Formation
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Transform coordinates to an space in which tracks are spatially separated

● Cluster track/shower fragments at this stage

Pa
pe

r: 
ar

Xi
v:

20
07

.0
30

83

ICARUS simulation

Fragments

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

BNB νμ  only

https://arxiv.org/abs/2007.03083


Clustering Strategy
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At this point, must do away with pixel-level predictions

● Number of target clusters: unknown
● Cluster label: non-unique (permutation-invariant)

Density based clustering (DBSCAN)? Yes, but…

1. How to break tracks?

→ Dense problem ✓

2. How to aggregate shower fragments and 

broken up track fragments? 

→ Aggregation problem



Fragment Graph Representation
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We now represent the set of 
fragments as a set of nodes in a graph 
where edges represent correlations

Node features:

● Centroid
● Covariance matrix
● Start point/direction
● . . .

Edge features:

● Displacement vector
● . . .  



Aggregation
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Graph Neural Network: develop features useful to node+edge classification

Paper: PhysRevD.104.072004

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS simulation ICARUS simulation

Classify voxels 
into categories 
with UResNet

Fragments Particles



Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together
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Particles

ICARUS simulation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

BNB νμ  only

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Currently using traditional techniques for particle energy reconstruction:
● Range-based energy reconstruction of muons and protons look good

Primary muons
Contained  (46 %)

Primary protons
Contained (89%)

Particle energy reconstruction
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Currently using traditional techniques for particle energy reconstruction:
● Range-based energy reconstruction of muons and protons look good
● Calorimetric energy reconstruction of electrons also solid

More detail in Dae Heun’s talk this afternoon

Primary muons
Contained  (46 %)

Primary protons
Contained (89%)

Particle energy reconstruction
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Primary electrons
Contained (63%)

ML-based Reconstruction for SBN, F. Drielsma (SLAC)



Interaction Aggregation
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Aggregate track/shower particle instances into interactions

● Find edges that connect fragments particles that belong together
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Interactions

ICARUS simulation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

BNB νμ  + Cosmics

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Identification

50

Particle species much easier to infer in context

● Shower conversion gaps, secondary hadrons, Michel decays, etc.

Photon
Electron
Muon
Pion
Proton

ICARUS simulation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

BNB νμ  primaries only



Particle Identification
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Particle species much easier to infer in context

● Michel decays, secondary hadrons, shower conversion gaps, etc.

Generic dataset (particle bombs)

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Photon
Electron
Muon
Pion
Proton

ICARUS simulation



Important to know which particle originate from the vertex

● Central to any exclusive analysis (study specific interaction channels)

Primary Identification
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ICARUS simulation

Secondary
Primary

1μ2p1π0

Accuracy: 89%

ML-based Reconstruction for SBN, F. Drielsma (SLAC)

BNB νμ  primaries only



Reconstruction in LArTPCs

Paper: arXiv:2102.01033

End-to-end ML-based reconstruction chain 
● UResNet for pixel feature extraction, GrapPA for superstructure formation

Convolutional NN Graph NN
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https://arxiv.org/abs/2102.01033


e-

p+π+

ICARUS Analyses Underway
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Several physics analyses underway in ICARUS using this ML chain:

● BNB CCQE 1μ1p selection (J. Mueller): νμ 
disappearance/cross section

ML-based Reconstruction for SBN, F. Drielsma (SLAC)



e-
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ICARUS Analyses Underway
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Several physics analyses underway in ICARUS using this ML chain:

● BNB CCQE 1μ1p selection (J. Mueller): νμ 
disappearance/cross section

● BNB CC-π0 selection (L. Kashur): shower energy scale/cross section

ML-based Reconstruction for SBN, F. Drielsma (SLAC)



e-

p+π+

ICARUS Analyses Underway
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Several physics analyses underway in ICARUS using this ML chain:

● BNB CCQE 1μ1p selection (J. Mueller): νμ 
disappearance/cross section

● BNB CC-π0 selection (L. Kashur): shower energy scale/cross section

● BNB ν
e
 selection (D.H. Koh): low energy excess, see his talk this afternoon!

ML-based Reconstruction for SBN, F. Drielsma (SLAC)



e-

p+π+

ICARUS Analyses Underway
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Several physics analyses underway in ICARUS using this ML chain:

● BNB CCQE 1μ1p selection (J. Mueller): νμ 
disappearance/cross section

● BNB CC-π0 selection (L. Kashur): shower energy scale/cross section

● BNB ν
e
 selection (D.H. Koh): low energy excess, see his talk this afternoon!

● NuMI ν
e
 selection: cross-section

● Higgs-portal scalar decays S→ee (J. Dyer): BSM physics

ML-based Reconstruction for SBN, F. Drielsma (SLAC)



Heavy lifting by B. Carlson to port work to SBND

● First training sample produced, preliminary training completed yesterday
● Performance looks as expected, ready for simulation-based analyses!

Short Baseline Near Detector (SBND)

ML-based Reconstruction for SBN, F. Drielsma (SLAC) 58

SBND simulation

Photon
Electron
Muon
Pion
Proton



DUNE-ND will witness the highest rate of ν interactions in a LArTPC
● ~20 ν/spill + 30 rock muons (100 m3 of LAr) 

● Simulations show that we can deal with that rate
● 2x2 demonstrator online by EoY, more to come!

Beyond SBN 

ML-based Reconstruction for SBN, F. Drielsma (SLAC) 59

DUNE-ND 
pile-up level!

2x2 simulation

Interactions



Conclusions
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End-to-end ML-based reconstruction 
chain mature and functional:

● UResNet for pixel feature 

extraction, GrapPA for 

superstructure formation

● Used on ICARUS sim./data, SBND 

and DUNE-ND (high neutrino 

pileup) sim. today! Stay tuned…

● Check out this ICARUS 

interactive reconstructed event 

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://web.stanford.edu/~drielsma/event_icarus_full.html
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Liquid Argon Time-Projection Chambers
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Case study: Detector

The largest LArTPC in operation is ICARUS

● Surface-level detector
● 500 t fiducial mass (2 cryos, 4 TPCs)
● Physics: sterile neutrinos (MiniBooNE / 

Neutrino-4), cross sections, BSM

Event rates

● BNB beam: ~ 0.03 Hz neutrinos
● NuMI off-axis: ~ 0.015 Hz neutrinos
● In-time cosmic activity: ~ 0.25 Hz

Low-rate neutrino experiment with a 
significant cosmic background

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Message passing
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Two feature update steps

1. Edge update

2. Node update

Repeat n times (depth) 



Edge Selection
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The GNN gives you a list of edge 
scores, not a partition

For the best partition, ĝ, we must 

select edges which minimizes the 

partition CE loss Classification at the 
partition level!



Edge Selection
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Instead, iterate:

1. Compute partition loss for   the 

empty graph

2. Add the most likely edge, 

compute loss again

3. If L
n+1

 < L
n
, update partition

4. Repeat until the next best edge 

has s
ij
 < 0.5

 


