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data

* Then you can fine-tune the base model
using the small labeled sample
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Self-Supervised Learning in Vision

* You have a lot of data but not many labelled
examples

e Train some model that utilises the unlabelled
data

* Then you can fine-tune the base model
using the small labeled sample

e But HEP simulation comes with detailed
Information?

* |t can help mitigate biases we have in our
simulation

lllustration of MAE - vision foundation model



Mitigating biases by Pretraining

Self-supervised methods do not require labeled
data.

Can be trained directly on real data only or a
combination of Monte-Carlo and real data

Furthermore we can use our detector systematic
shifts in the pretraining phase - making the model
Invariant to variations in it.

SIMCLR naturally adresses all the above points



SIMCLR Overview



Representations

Pass an event x; through a neural network f to
extract a vector representation z..



Representations

Pass an augmented event x; through a neural network
f to extract a different vector representation z;.



Contrastive Learning

Jitter

Rotate

Pass pairs of augmented events through a neural
network f to extract vector representations.



Contrastive Learning

Rotate
Smear

In practice the set of augmentations to be applied to
the pairs is picked randomly for each training iteration.
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Contrastive Learning

Jitter

w sim(z, Z;) R 0 |

Rotate

Pass pairs of augmented events through a neural
network f to extract vector representations.

Representations from different events - low similarity
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Contrastive Learning

Jitter

W sim(z;, 2;) ~ 1 |

Rotate

Pass pairs of augmented events through a neural
network f to extract vector representations.

Representations from same event - high similarity
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Contrastive Learning

_ Physical Inductive Bias
Flexibility: /’
Use any augmentation - What invariance do we

encode?

Use any neural network - What is the most natural
data structure of the event?
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Contrastive Learning
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Augment

No |labels needed - can pre-train on real data!



Dataset and Method



Augmentations:
- random scaling, translation, rotation, dropping voxels
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Augmentations:

- random scaling, translation, rotation, dropping voxels
Architecture:

- a sparse sub manifold CNN based on ConvNexXt v2
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But wait aren’t CNNs already
invariant to translations?

Augmentations:
- random scaling,
Architecture: *
- a sparse sub manifold CNN based on ConvNexXt v2

'translation rotation, dropping voxels
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Aside - CNN Translation Invariance

- But wait aren’t CNNs already
W invariant to translations?

Convolutions are equivariant to translation,
but this does not directly translate to
Invariance.

Train Train  Test

Adapted F “CNNs Are Not | lant t .
ranslation, but They Can Learn (o Be” Although architectures can be constructed to

_ be invariant to translations, most modern
Turns out not quite! CNNs are not by default
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Architecture

conv3d

ConvNeXt v2 Block

Downsample

‘-----------
.-----------'
—------------.

ConvNeXt v2 Block

ArCh iteCtU re: Full architecture

- a sparse submanifold CNN based on We use an MLP 10 et the similarity
COﬂVNeXt V2 vector for CLR and a Linear layer if

we are training a classifier.
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Training and Evaluating SImCLR

We only need to train the
base model once!

Can train multiple models
cheaply

All downstream models are
Classifer decorrelated from the
parameters we used for
augmentations
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Preliminary Results



Classifier + Augmentations
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CLR Results

B Classifier W Classifier + Aug ™ CLR
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CLR v Linear Classifer Baselines
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All models are frozen - logistic regression fit on top.

For the classifiers the last layer is removed and we fit on the features
after maxpooling.

For CLR we remove the MLP and again use the features after
maxpooling.



More work needed

A lot more careful evaluation has to be done -
however the results so far are very promising

Most importantly, how does this compare
against:
* Other pretraining techniques - MAE, datalvec

 Other methods for decorrelation - DANN,
uncertainty aware learning

Also would like to evaluate fine-tuning to other
tasks e.g predicting the particles within an event
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Future Work

* Consider a more realistic scenario - DUNE
ND detector sim nuisance parameters as
augmentations

* Use larger batch sizes for the base model
* EXxplore other contrastive learning methods
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Future Work

* Fine-tune the model on another task e.g
predicting final state particles

* Consider a more realistic scenario - DUNE
ND detector sim nuisance parameters as
augmentations

 Use larger batch sizes for the base model
* EXxplore other contrastive learning methods

| think this is could be a very exciting way to combine novel ideas
from vision enhancing the way ML is used in physics analyses!
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Thank you

radi.radev@cern.ch
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