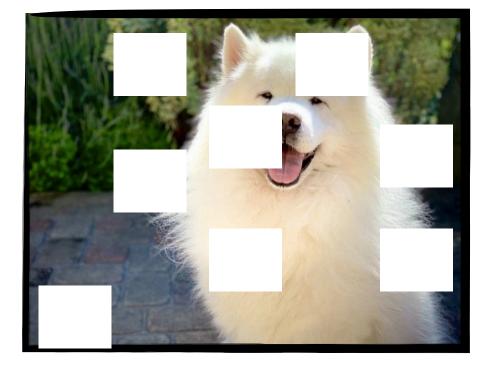
Self-Supervised Learning for Neutrino Experiments

Radi Radev, Junior Fellow @ CERN

Self-Supervised Learning in Vision

- You have a lot of data but not many labelled examples
- Train some model that utilises the unlabelled data
- Then you can fine-tune the base model using the small labeled sample



Self-Supervised Learning in Vision

- You have a lot of data but not many labelled examples
- Train some model that utilises the unlabelled data
- Then you can fine-tune the base model using the small labeled sample

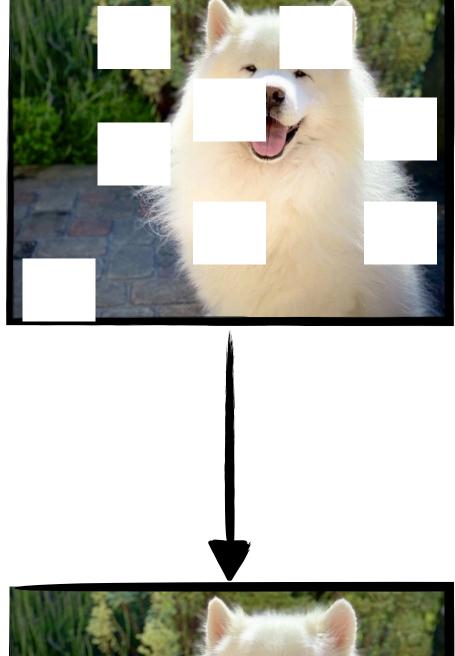


Illustration of MAE - vision foundation model

Self-Supervised Learning in Vision

- You have a lot of data but not many labelled examples
- Train some model that utilises the unlabelled data
- Then you can fine-tune the base model using the small labeled sample
- But HEP simulation comes with detailed information?
- It can help mitigate biases we have in our simulation

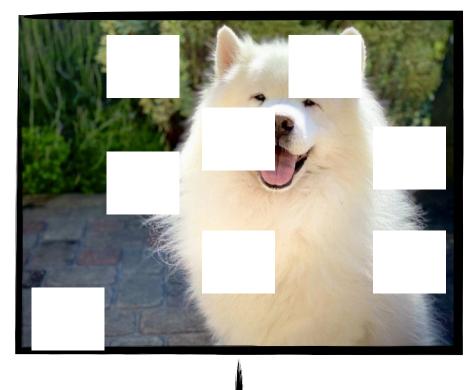


Illustration of MAE - vision foundation model

Mitigating biases by Pretraining

Self-supervised methods do not require labeled data.

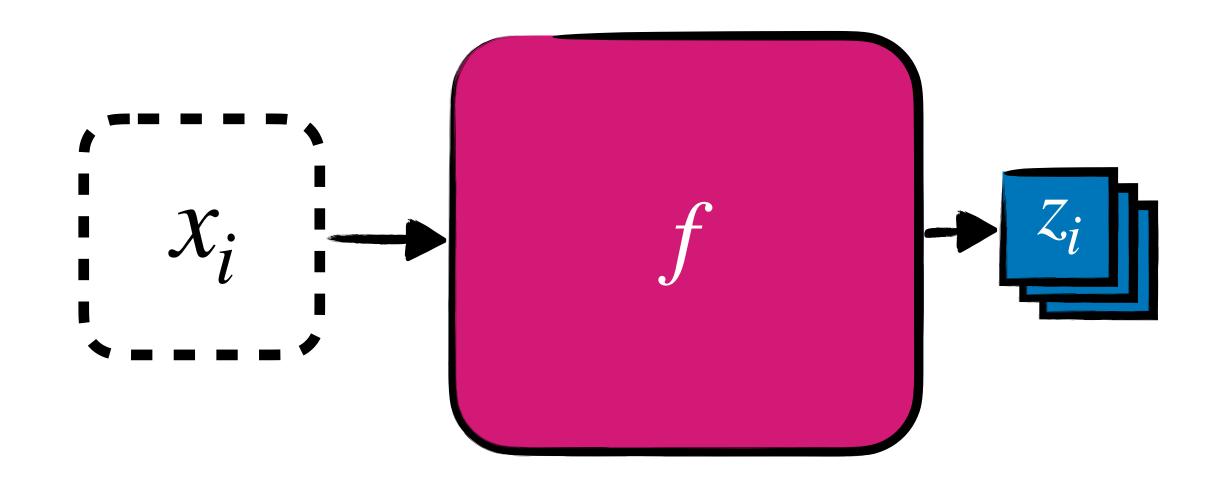
Can be trained directly on real data only or a combination of Monte-Carlo and real data

Furthermore we can use our detector systematic shifts in the pretraining phase - making the model invariant to variations in it.

SimCLR naturally adresses all the above points

SimCLR Overview

Representations



extract a vector representation z_i .

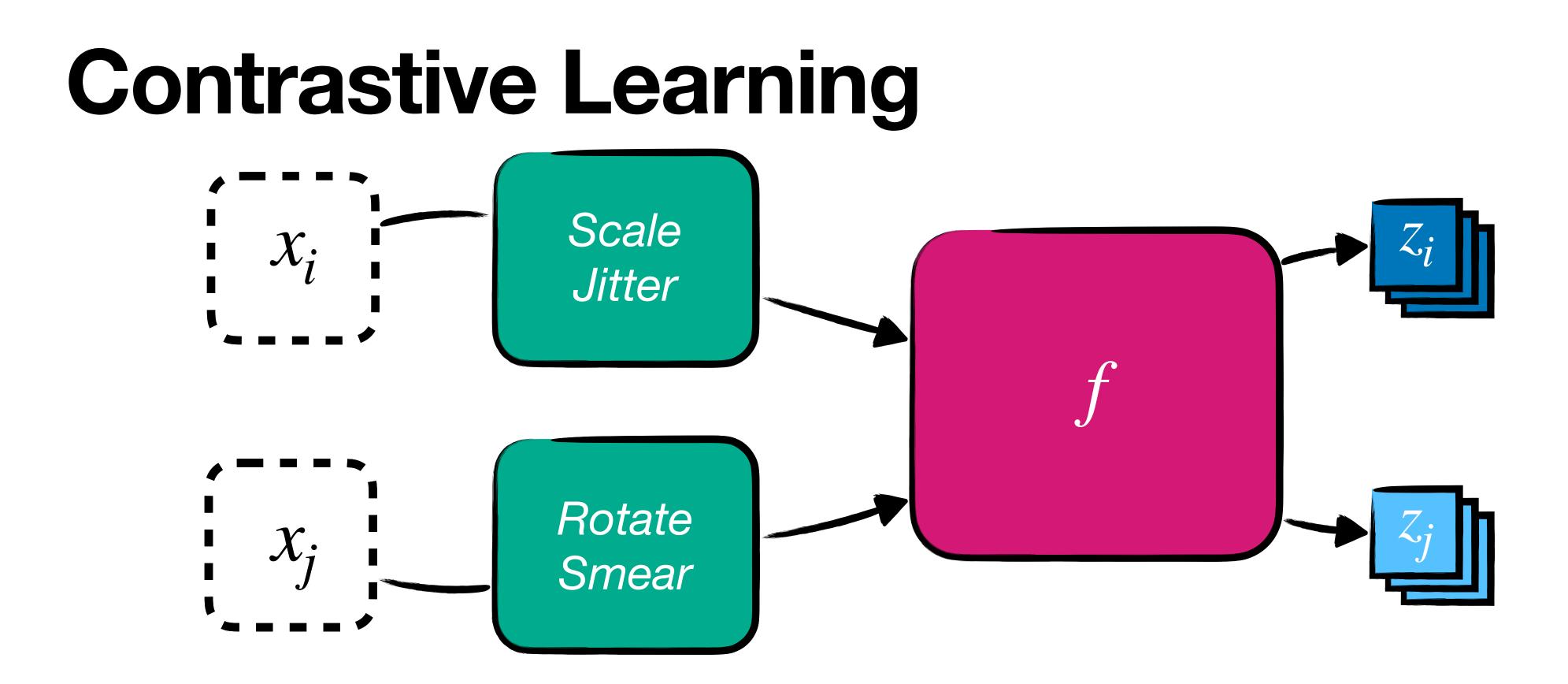
Pass an event x_i through a neural network f to

Representations

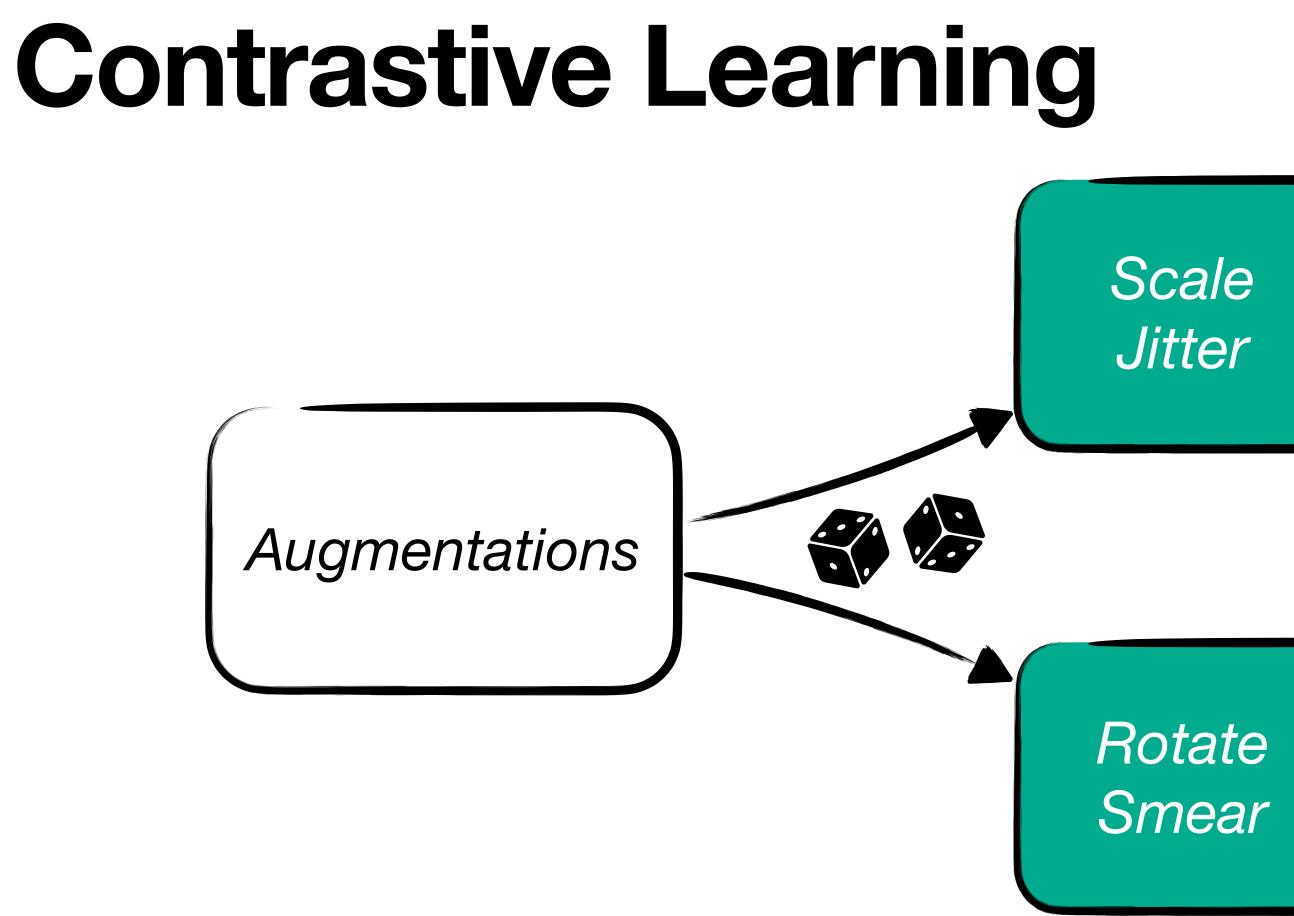


f to extract a different vector representation z_i .

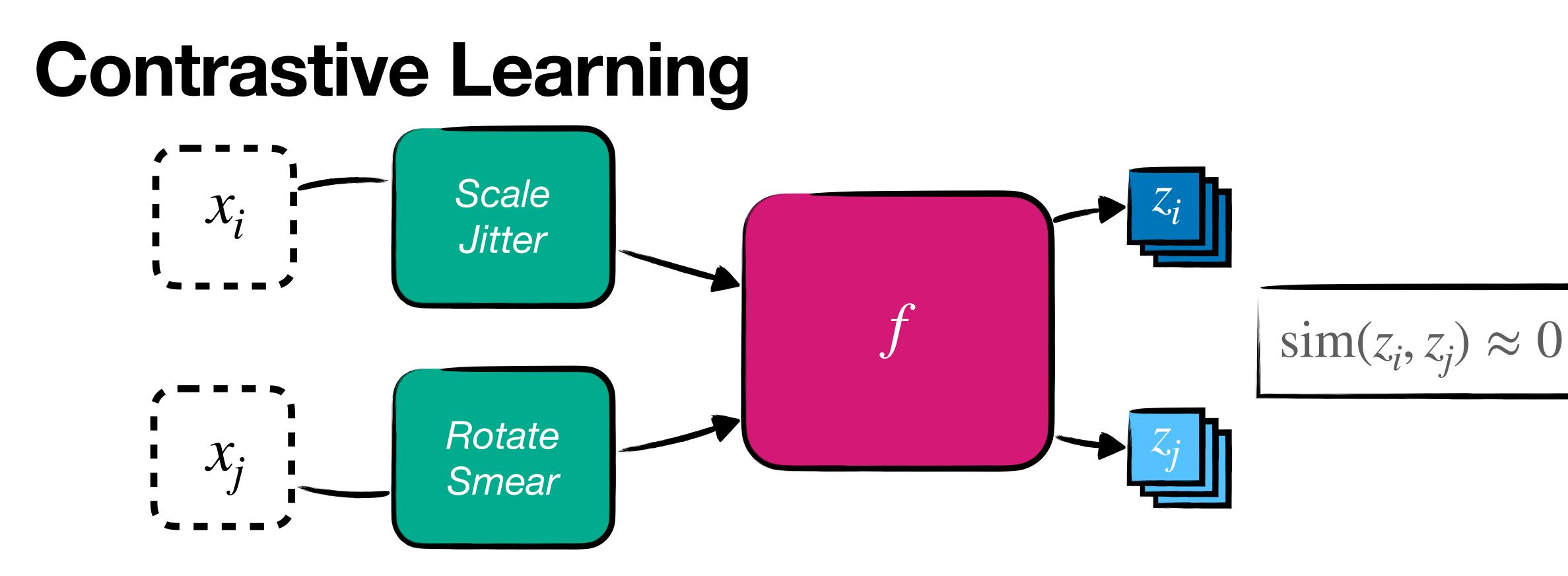
Pass an augmented event x_i through a neural network



Pass pairs of **augmented events** through a **neural network** *f* to extract **vector representations.**

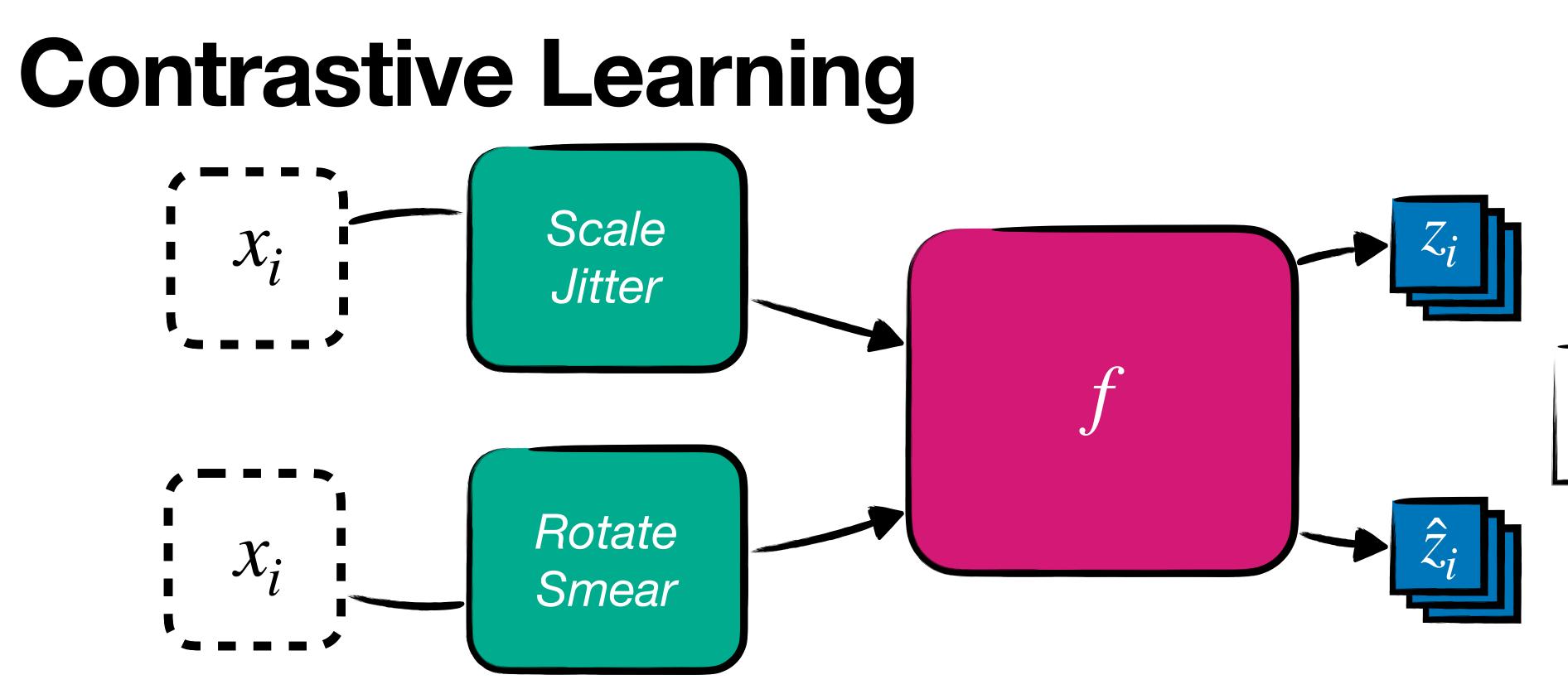


In practice the set of augmentations to be applied to the pairs is picked randomly for each training iteration.



Pass pairs of augmented e **network** f to extract **vector**

Representations from different events - low similarity

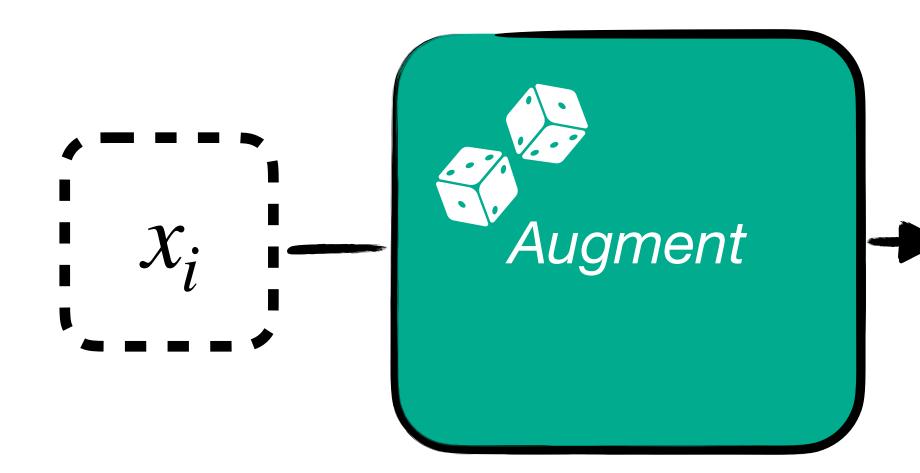


Pass pairs of **augmented events** through a **neural network** *f* to extract **vector representations.**

Representations from same event - high similarity

$$\sin(z_i, \hat{z}_i) \approx$$

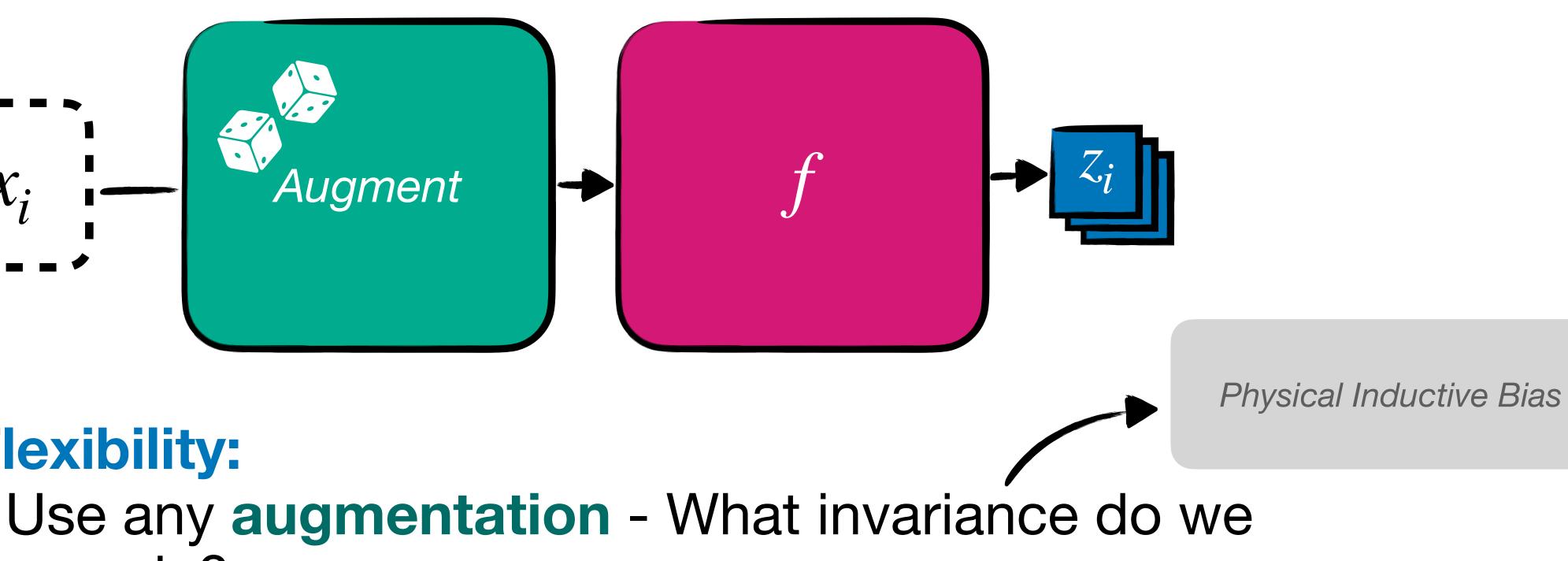
Contrastive Learning



Flexibility:

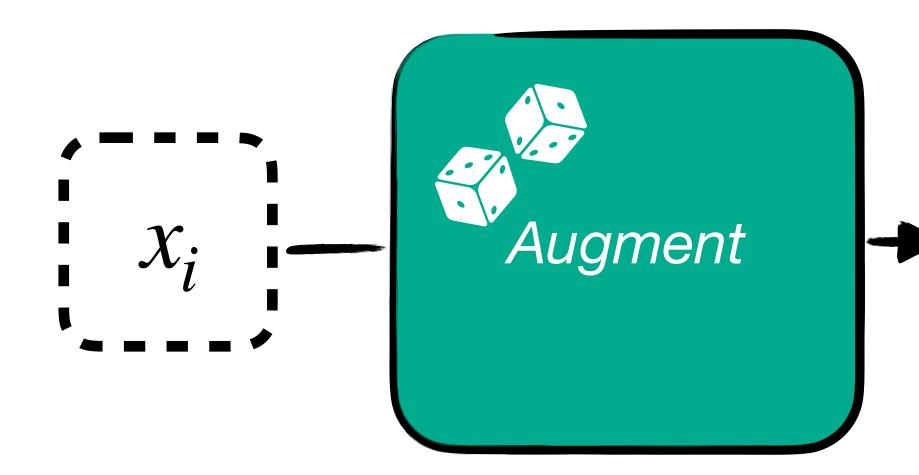
encode?

data structure of the event?

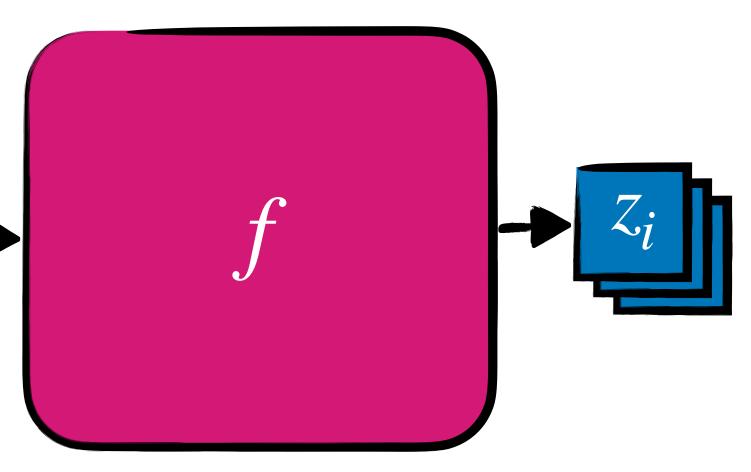


Use any neural network - What is the most natural

Contrastive Learning

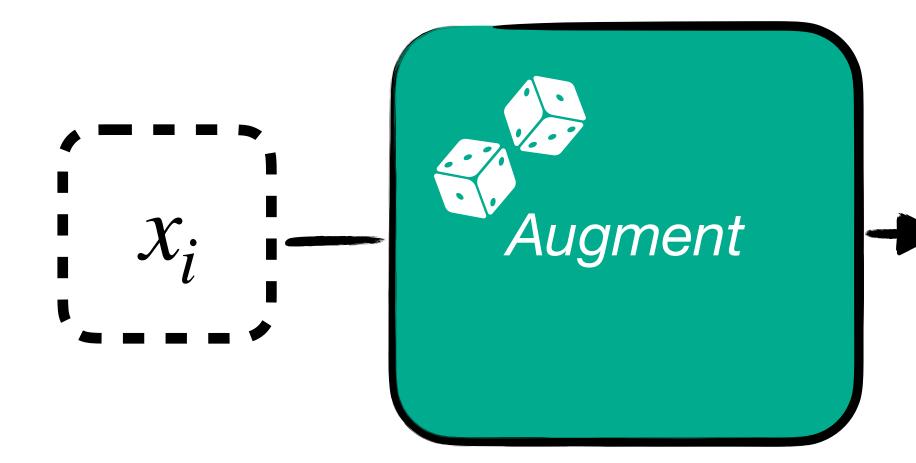


No labels needed - can pre-train on real data!

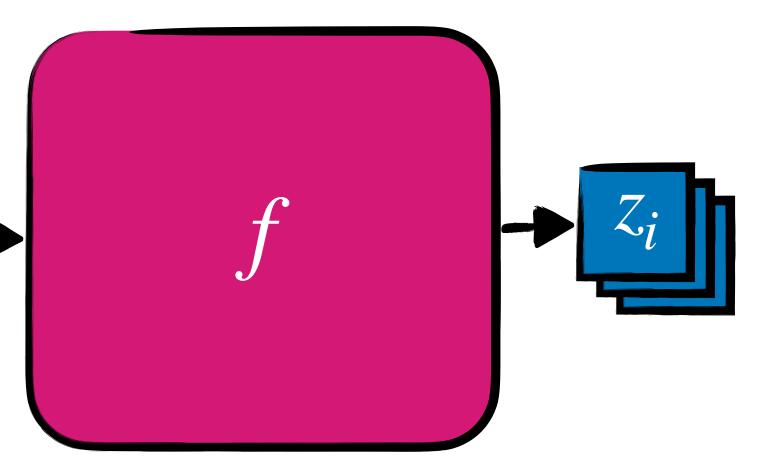


Dataset and Method

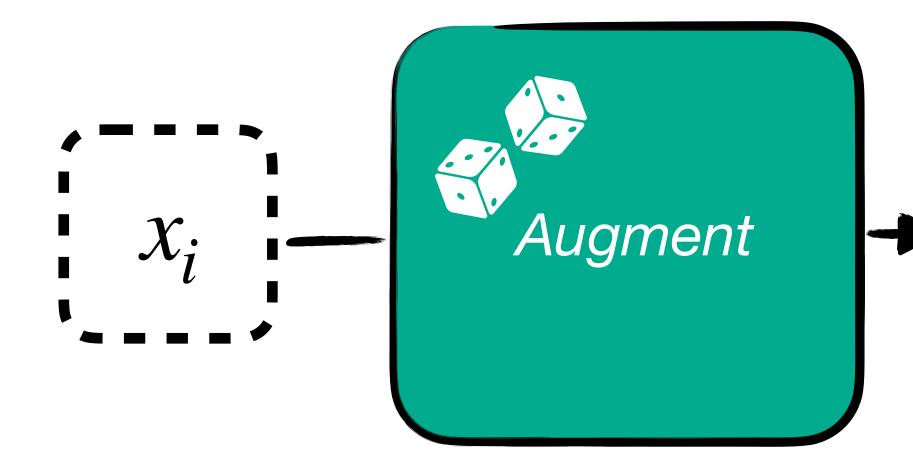
Method



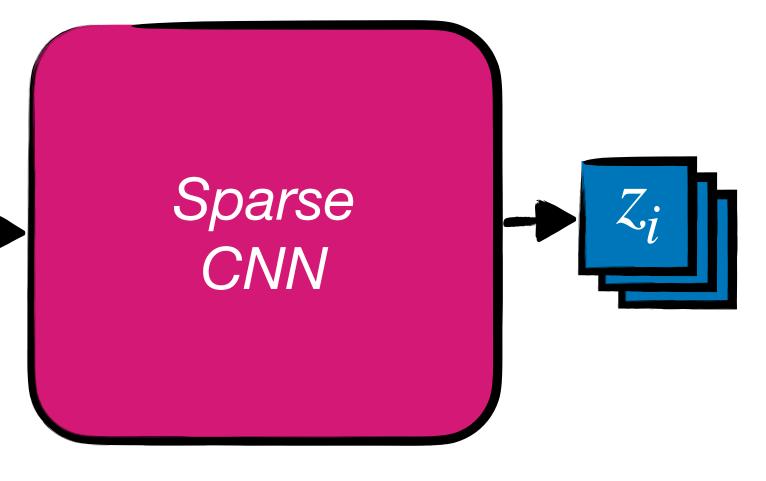
Augmentations: random scaling, translation, rotation, dropping voxels



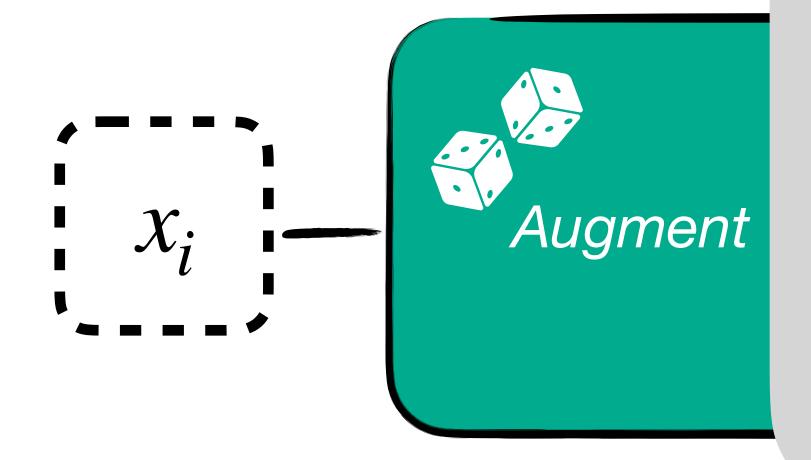
Method



Augmentations: - random scaling, translation, rotation, dropping voxels **Architecture:** - a sparse sub manifold CNN based on ConvNeXt v2



Method

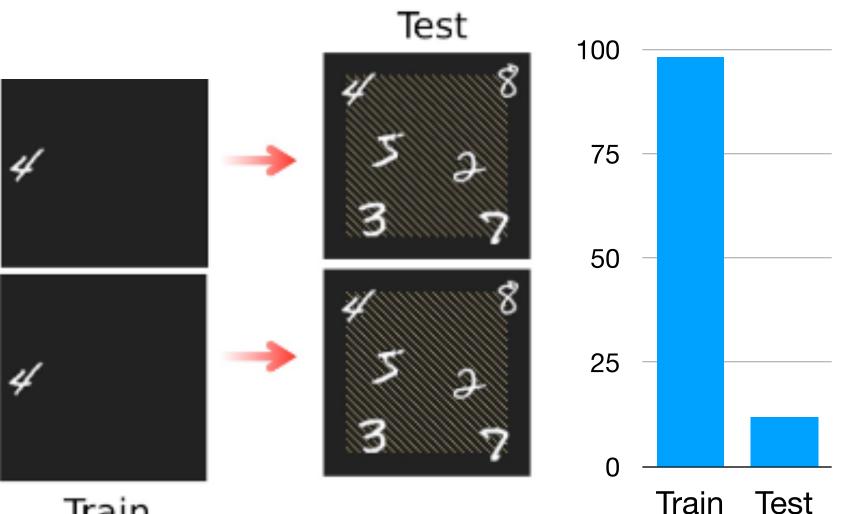


Augmentations: - random scaling, translation rotation, dropping voxels Architecture:

- a sparse sub manifold CNN based on ConvNeXt v2

But wait aren't CNNs already invariant to translations?

Aside - CNN Translation Invariance



Train

Adapted From "CNNs Are Not Invariant to Translation, but They Can Learn to Be"

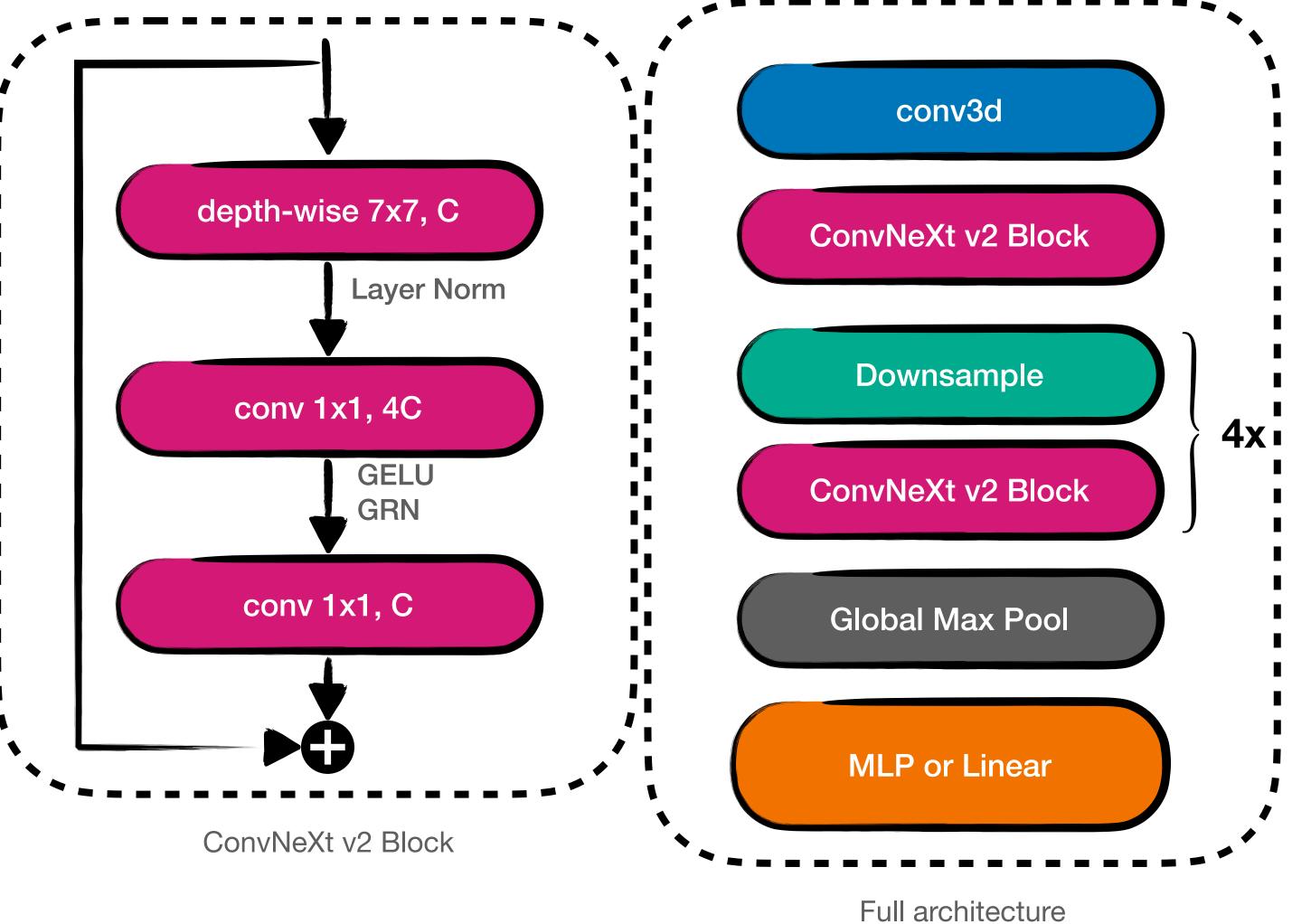
Turns out not quite!

Although architectures can be constructed to be invariant to translations, most modern CNNs are not by default

But wait aren't CNNs already invariant to translations?

Convolutions are **equivariant** to translation, but this does not directly translate to invariance.

Architecture

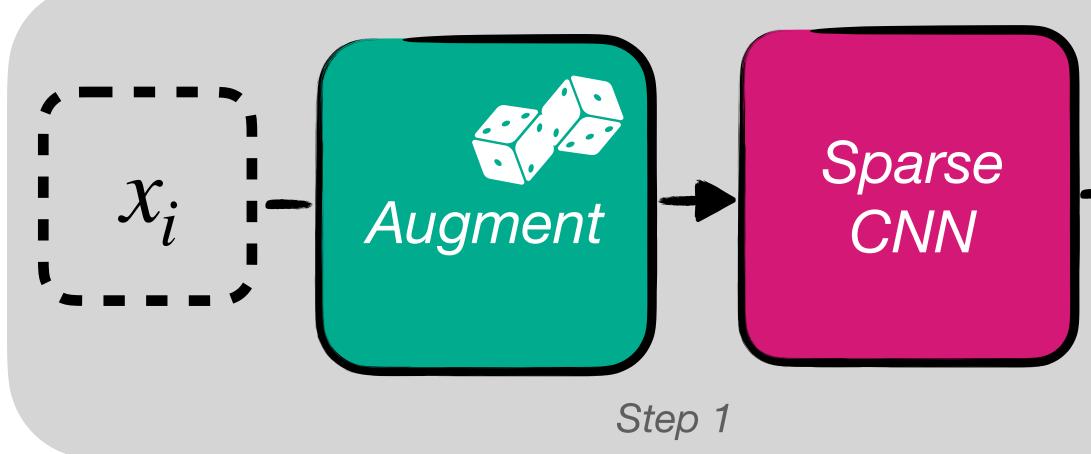


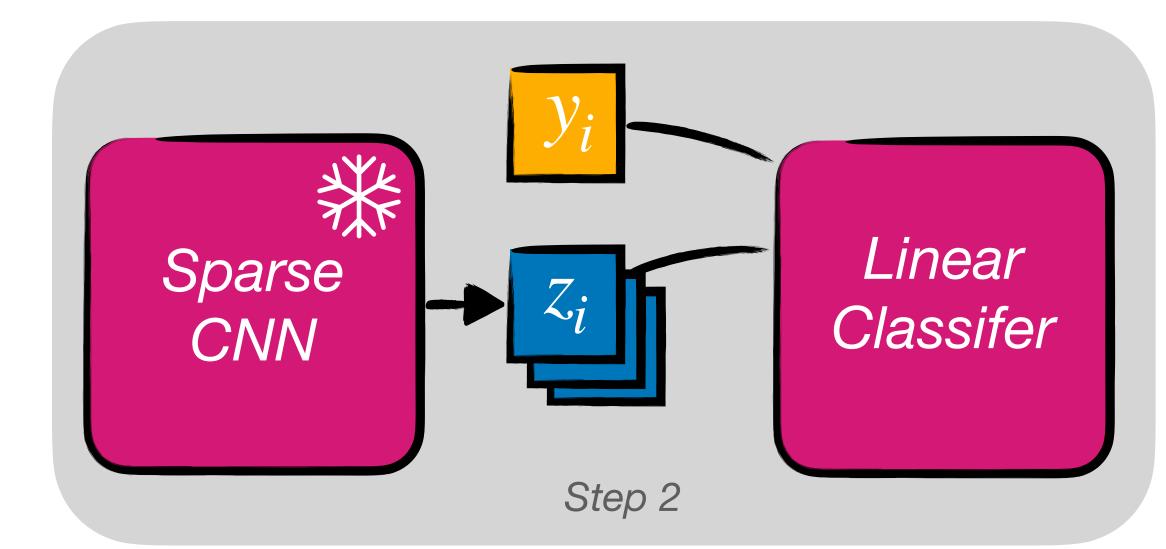
Architecture:

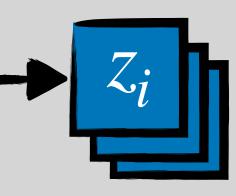
- a sparse submanifold CNN based on ConvNeXt v2

We use an MLP to get the similarity vector for CLR and a Linear layer if we are training a classifier.

Training and Evaluating SimCLR







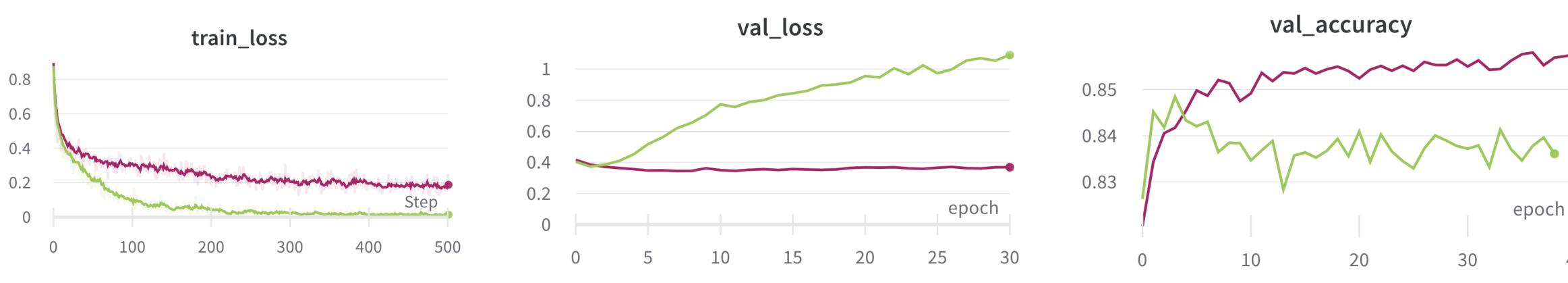
We only need to train the base model **once**!

Can train multiple models cheaply
All downstream models are decorrelated from the parameters we used for augmentations

Preliminary Results

Classifier + Augmentations

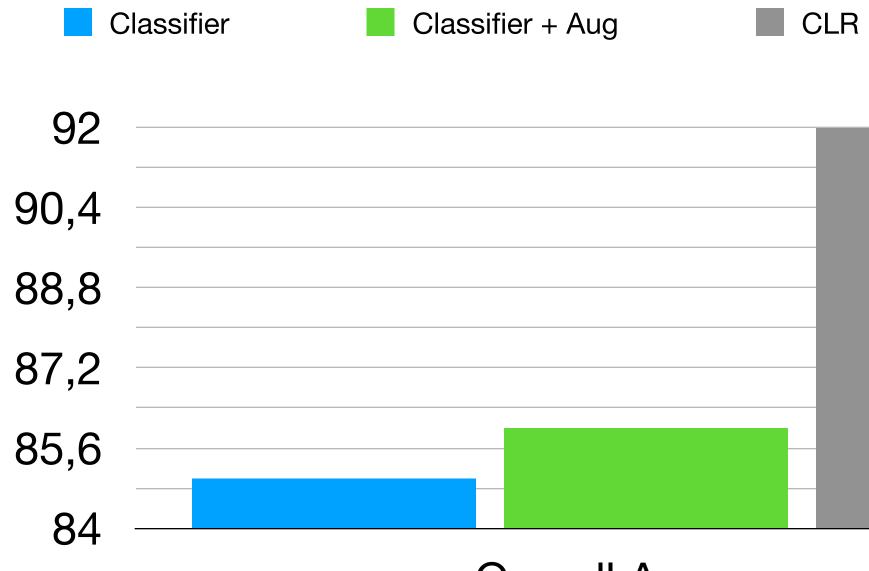
Nominal classifier



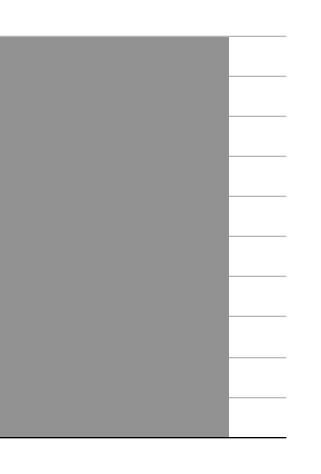
Classifier + Augmentations

The augmentations improve our nominal classifier

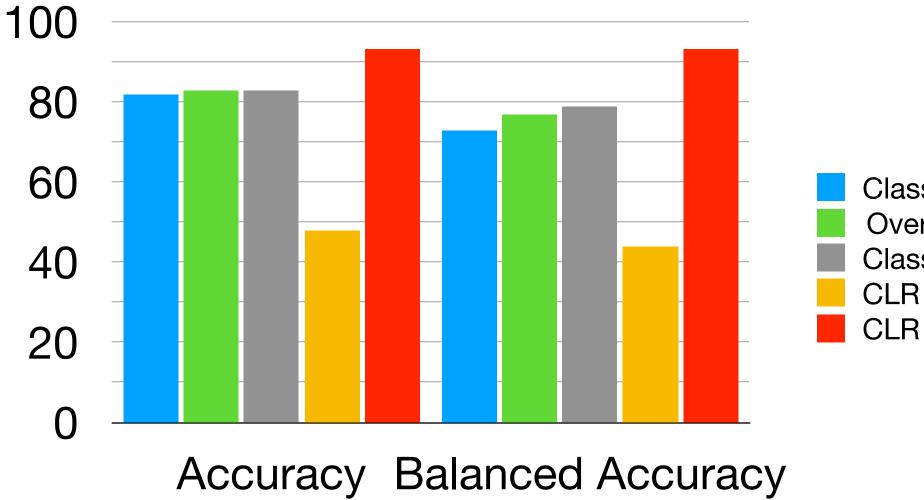
CLR Results



Overall Accuracy



CLR v Linear Classifer Baselines



All models are **frozen** - logistic regression fit on top.

For the classifiers the **last layer** is removed and we fit on the features after maxpooling.

For CLR we remove the **MLP** and again use the features after maxpooling.

yi Sparse CNN Vi Linear Classifer

Classifier Overfit Classifier Classifier + Augmentations CLR Randomly Initalized CLR

Linear Classifier Test

More work needed

A lot more careful evaluation has to be done however the results so far are very promising Most importantly, how does this compare against:

- Other pretraining techniques MAE, data2vec
- Other methods for decorrelation DANN, uncertainty aware learning

Also would like to evaluate fine-tuning to other tasks e.g predicting the particles within an event

Future Work

- Consider a more realistic scenario DUNE ND detector sim nuisance parameters as augmentations
- Use larger batch sizes for the base model
- Explore other contrastive learning methods

Future Work

- Fine-tune the model on another task e.g. predicting final state particles
- Consider a more realistic scenario DUNE ND detector sim nuisance parameters as augmentations
- Use larger batch sizes for the base model
- Explore other contrastive learning methods

from vision enhancing the way ML is used in physics analyses!

I think this is could be a very exciting way to combine novel ideas

Thank you radi.radev@cern.ch

Photo by Google DeepMind on Unsplash

