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DUNE Detectors

» Far Detector (FD)
— Multiple 17kt LArTPCs with wire readout

» Near Detector (ND) complex:

— ND-LAr

— Primary LAr target at ND
— Designed for high intensity neutrino beam — modular optically
isolated drift volumes and pixel readout

— Muon spectrometer (Phase 1) + Gaseous Ar target (Phase 2)
— System for on-Axis Neutrino Detection (SAND) — beam monitor

— Precision Reaction Independent Spectrum Measurement (PRISM)
— ND-LAr + muon spectrometer able to move up to 33m off-axis
from beam
— Sample different fluxes from neutrino beam
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PRISM

» ND supports long-baseline oscillation measurements by constraining elements in
convolution:
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PRISM Linear Combination &

» Off-axis positions can be linearly combined to approximate a target FD oscillated flux from ND

measurements .
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Translating from Near to Far
» Producing FD prediction from ND measurements in oscillated flux requires correcting for backgrounds,

selection, and resolution
— Data-driven methods for backgrounds and for selection due to containment under development
— Still need to understand differences in energy resolution and neutrino flavour identification

» Apply machine learning by treating ND and FD Near Detector Far Detector
detector response as images from two domains
of detector technology

» Initial focus on translating events contained in
ND-LAr

» Complete translation requires:
— Infilling non-active regions between ND drift
modules (later slides)
— Incorporate muon spectrometer reconstruction

Xlmp, 250
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» Generate paired data by simulating the same charge depositions at both detectors

» Put pairs into same coordinate system by projecting each 3D ND pixel response onto a wire
and time for each wire plane

Generating Paired Data
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Image-to-lmage Translation w/ pix2pix

project onto FD wires pix2pix
_ — FD Reco
\ 1 \
» Conditional GAN architecture
» Full FD resolution projection » 9-block ResNet generator with up/downsampling layers
» Input channels include ADC, wire projection info, » PatchGAN discriminator
ND + FD drift distances » L1 loss applied in signal region only
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Results - Image Translation

ND Input FD Truth FD Network Output
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Results - Wire Trace

Channel 268 in ROP
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Evaluating with Reconstruction

» Use torchscript + libtorch to import trained model into C++ to use in FD simulation chain

» Generate analysis files for ND events with predicted FD reconstruction from network
— And "true” FD reco from resimulating charge depositions at FD

» Key reco variables:

— CVN scores: CNN acting on hits to classify neutrino flavour
— Reconstructed neutrino energy: calorimetric energy reconstruction
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CVN scores

CVN Muon Neutrino Score Distribution
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Reconstructed Energy

Reco Neutrino Energy Distribution Reco Neutrino Energy Fractional Difference
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Cross Section Systematics A

» Consider uncertainty in network predicted FD reconstructed energy due to cross section systematics
using event reweighting
— Compare with smearing matrix approach — using MC to unfold EX? — E, and smear E, — E2
» Want cross section systematics to cancel between prediction and data
— Look at ratio of FD predicted spectra with true FD spectrum under systematic reweights
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Results - Cross Section Reweighting
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Translation network models difference in E, — Ejc between near and far much better than smearing
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Filling in Dead Regions in ND-LAr

» Time to face a caveat — need to predict FD detector response in the non-active ND regions between
drift modules to correctly translate

» Difficult to do this after wire projections since positions of gaps are not well defined in this projection
» Attempt to infill gaps between drift modules at the 3D pixel response level
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ML with Sparse Tensors

» Consider generating detector response in the
non-active region as an inpainting problem in
3D

» Voxelised ND-LAr has size O (10%) — need
to use sparse tensors

— A sparse tensor is an N dimensional extension
of a sparse matrix

— MinkowskiEngine is a library that implements
all standard neural network layers for sparse
tensors

» Implement a U-Net architecture using sparse
tensor layers
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Training to Infill

» Create training data by removing voxels using a randomly shifted mask of ND-LAr’s drift
module gaps
» Architecture requires all relevant coordinates to be defined in input

— Use active pixels neighbouring the gaps to make reflections into gaps
— Smear the reflected pixels to produce a mask of expected infill coordinates
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Infill Results — Early!
Predicted Infill Target Infill
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Summary

» PRISM allows oscillation physics to be studied with very little model-dependence if
detector extrapolation is handled well

» Developed image-to-image translation approach to extrapolation

— Generated paired ND-FD dataset

— Model predictions show good agreement with truth for FD reconstruction

— Demonstrated network removes a significant fraction of cross-section uncertainty
compared to MC smearing

» Developed infill network to fill gaps in ND before translation

— Using U-Net for sparse tensors
— Initial results promising — more model tuning and exploration to do
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Thank you!



