Deep Learning applications for v, reconstruction in the ICARUS experiment.
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Search for sterile neutrinos with the ICARUS T600 Detector

= Low-Energy Excess (LEE) is an excess of electron-like
neutrino events in the 200-600 MeV energy range,
observed by LSND and MiniBooNE.

= Search for sterile neutrinos and investigating v,
appearance/ v, disappearance in these regions are one
of the flagship analysis goal of the SBN program.

= The e/y separation capability of the liquid argon time
projection chamber (LArTPC) technology, and
information from other subsystems will allow ICARUS to
resolve the common confounding backgrounds (CC-m°,

A — Ny) in the MiniBooNE analysis.
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052002

The ICARUS T600 Detector

= The ICARUS T600 detector is composed of three major subsystems:
= Time Projection Chambers (TPCs): allow high resolution imaging of particle trajectories.
= Photomultiplier Tubes (PMTs): scintillation light from charged particles used for interaction timing information

= Cosmic Ray Tagger (CRTs): tagging system for crossing and exiting particles

[ v, TPC image ] .
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Electron Neutrino Reconstruction
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In this talk, we use TPC and PMT information to identify candidate electron neutrino events.
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Particle and Interaction Reconstruction using ML

= Analysis using ML tools is a two-stage process:
1. Organize neural network predictions to human-

readable objects:
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Particle and Interaction Reconstruction using ML

= Analysis using ML tools is a two-stage process:

1. Organize neural network predictions to human-

readable objects: . !
=  Particle: depositions that are predicted to belong to
the same particle B »
= ex. PDG code, primary indicator, interaction o

clustering labels
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Particle and Interaction Reconstruction using ML

= Analysis using ML tools is a two-stage process:
1. Organize neural network predictions to human-

readable objects:
=  Particle: depositions that are predicted to belong to
the same particle
= ex. PDG code, primary indicator, interaction
clustering labels
= Interaction: collection of particles that originate from
the same vertex

= ex. constituent particles, PMT flash timing,
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Particle and Interaction Reconstruction using ML

= Analysis using ML tools is a two-stage process:
1. Organize neural network predictions to human-
readable objects:
= Particle: depositions that are predicted to belong to

the same particle

= Interaction: collection of particles that originate from
the same vertex
2. Run post-processing algorithms to further compute
useful quantities for reconstruction and append
information to Particle and Interaction instances.
= ex. Range-based track energy estimation, vertex

reconstruction, particle direction estimation
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How OpTOFinder works

= TPC Interactions: group of particle depositions

TPC Interactions that have the same originating parent
(spatially clustered particle trajectories) (Qcluster_t)

O O O O = PMT Interactions: collection of time-coincident

optical signals across PMTs. (Flash_t)
= Goal: which TPC and PMT interaction share the

same underlying interaction / root particle?

PMT Interactions
(“OpFlash” = time-coincident optical signal)

2023. 8. 21. NPML 9



How OpTOFinder works

= A form of weighted-edge bipartite matching
TPC Interactions problem.
(spatially clustered particle trajectories) = For each pair (QCluster_t, Flash_t)
= Exclude space/time-wise impossible
matches
= Compute the charge-based log-likelihood

(LL) score

= Find the combination of pairs that
= 5 S maximize the combined LL from all chosen
PMT Interactions . .

7 gt PO v , , pairs (Greedy, or Munkres/Hungarian
(“OpFlash” = time-coincident optical signal)

Matching algorithm)
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Electron Neutrino Selection: Dataset

= Dataset: BNB v, + CORSIKA (3.6k) . /

= One v, + Ar interaction, =36 out-of-time cosmic interactions /

per image. , '. l/ | \
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Electron Neutrino Selection: Dataset

B CCQE
B MEC Other

= Dataset: BNB v, (G4, simulated) + CORSIKA (3.6k)
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Electron Neutrino Selection: Flash Matching

= Using PMT information alone, we can

reject a significant number of cosmic

Interactions:

2023. 8. 21.

82.45% of all True v,'s are matched
to a PMT flash within the beam
window (0, 1.6us).

True Neutrino Interactions

False

True

Flash Matching Efficiency

False True

99.34% 0.66%
(131438) (868)

17.55% 82.45%
(619) (2909)

Reco Flash In-Time



Electron Neutrino Selection: Flash Matching

= Using PMT information alone, we can

reject a significant number of cosmic

Interactions:
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82.45% of all True v,'s are matched
to a PMT flash within the beam
window (0, 1.6us).

70.13% of all reconstructed PMT
flashes that are within the beam

window are true v,’s.

True Neutrino Interactions

False

True

Flash Matching Purity

False True

98.35% 29.87%
(151735) (1051)

1.65% 70.13%
(2542) (2467)

Reco Flash In-Time



Electron Neutrino Selection: Particle Identification

= Particle Identification with GNNs ] n ’
= |eft: BNB v, Primaries Only ~ e A A 1
= e VsS.yseparation is comparable to generic
dataset, in good shape. ° Yo e o
= Significantm - puandp — m confusion.
0.00% 0.00% 0.00% 0.00% 0.00%

= |ssue in particle energy distribution within (0) (0) (0) (0) (0)

True Particle Type
7]

interaction at fixed total energy (WIP)

- 0.08% 0.00% 24.19%
(1) (0) (293)

o 0.00% 0.00% 1.22% 87.53%
(0) (0) (62) (4466)

Reco Particle Type
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Electron Neutrino Selection: 1eNpOr®

. . . . . _ 1leNpOm* +FM Background
« Signal Definition: 1eNpOrrT Predicted Interactions with

PMT flash time within the beam window (1eNpOnE +FM) 0.01% 99 99%

(17) (132122)

Cosmic

« Efficiency: measure of how well the reconstruction

method captures true v, 1eNpOrE interaction as signal.

« Efficiency = # of true positives / # of True 1eNpOpi
55.34% 44.66%
(948) (765)

True ve 1eNpOm*

True Neutrino Interactions

5.34% 94.66%
(97) (1718)

True v, Other

Row-Normalized
Truth -> Reco

Reconstructed
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Electron Neutrino Selection: 1eNpOr®

1leNpOn* +FM Background
« Signal Definition: 1eNpOrrT Predicted Interactions with

PMT flash time within the beam window (1eNpOrE +FM) 0.36% 97.30%

(4) (188035)

Cosmic

95.13% 0.81%

« Purity: measure of how many predicted signal interactions (1054) (1557)

True ve 1eNpOm*

actually correspond to a true signal.

« Purity = # of true positives / # of all signal interactions

True Neutrino Interactions

]
S 451% 1.90%
< (50) (3669)
Column-Normalized +
Reco -> Truth
Reconstructed
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Electron Neutrino Selection: 1eNpOr®

. . e 1leNpOn* +FM Background
« Signal Definition: 1eNpOrrT Predicted Interactions with

PMT flash time within the beam window (1eNpOrE +FM) 0.36% 97.30%
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Electron Neutrino Selection: Proton Energy Estimation
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Electron Neutrino Selection: Electron Shower Energy Estimation
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Electron Neutrino Selection: Neutrino Energy Reconstruction

2000

= Since the initial KE of protons and electrons are known, o] CCQE, 1eNpOpi
Reconstructible (43%)

the total visible energy is is given as: 1500 4

N
E,is = KE, + m, + Z KE},
i=1
= Any energy carried by outgoing neutrons or nucleon

True E E eco
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binding energy is not accounted for.
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= “Reconstructible” all constituent electrons and protons
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Electron Neutrino Selection: Neutrino Energy Reconstruction
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Electron Neutrino Selection: Neutrino Energy Reconstruction
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Currently, E,;s falls short
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Conclusion

= Qutline for CCQE electron neutrino selection and energy reconstruction using ML tools and

traditional calorimetry algorithms.

= 55% Efficiency and 95% Purity in 1eNpOm Exclusive Selection on BNB v, + OOT(out of time)
cosmic background simulation dataset.

= Higher statistics study with both out-of-time and in-time cosmic background

= Simulation vs. Data Study with run9435 data and hand-scanned events.

= Further fine-tuning of calorimetric post-processing algorithms.
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