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Neutrino Introduction
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Opening the KamLAND Onion:

Water Cherenkov Outer Detector

Hasung Song

An inner balloon holding 
LS loaded with Xe-136

1 kiloton of ultra-low radioactivity 
liquid scintillator (LS)

Mineral oil buffer

1,879 photomultiplier tubes 
(PMTs) face the LS providing ~34% 
photocoverage
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KamLAND-Zen Calorimeter Detector:
• Particles interact in the LS and deposit energy. 

Energy is converted to light and captured by 
PMTs.

• Energy Resolution:
𝜎𝐸

√𝐸
~6.7%

• Vertex Resolution: ~13.7𝑐𝑚
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KamLAND-Zen Timeline:

Hasung Song

𝑻𝟏/𝟐 > 𝟐. 𝟑 × 𝟏𝟎𝟐𝟔𝒚𝒓 (90% C.L.)
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0νββ : Signal and Background

• Looking for 2.46 MeV (Xe136 Q-value) electron 
events

• Primary Backgrounds:
• 2νββ decays

• Cosmic muon spallation (Long-Lived)

• Minor Backgrounds
• Radioactive contamination

• Solar neutrinos

• Cosmic muon spallation (Short-Lived)
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Cosmic Spallation Backgrounds

• Cosmic ray induced spallation backgrounds are the 
dominant background of concern for KLZ-800. 

• Cosmic ray muons can break apart heavy nuclei into lighter 
elements.

• Some of these lighter nuclei emit electrons and gamma-
rays at similar energy to our neutrinoless double-beta decay 
signal. 

• Most of these incidents can get removed by a coincidence 
cut.
• Look for events in the path of a recent cosmic muon 

• Also check for nearby detected neutron capture events
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Cosmic Spallation Backgrounds
• However, some of these isotopes have half-lives of hours or 

days, which makes muon coincidence tagging difficult 

• These events can only be rejected by their final decay 
products (betas/gammas)

• Machine learning has proven effective at rejecting these 
backgrounds
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Machine Learning in KLZ-800: KamNet

• Developed a novel deep learning model 
to distinguish backgrounds and signals

• KamNet takes a time-series of 2-D hit 
maps and returns a single-valued KamNet 
Score

• Convolutional-LSTM (Long-Short Term 
Memory) Layer with attention module

• Learns to identify and focus in on important 
sections of the event

• Spherical Convolution
• Utilizes spherical symmetry to learn complex 

features
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KamNet: Spherical Convolution
• Traditional cartesian convolution learns a small filter that is scanned 

over an input image
• Produces a cartesian activation map
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• Spherical Convolution learns a “filter” that spans the entire image, this filter is 
then rotated through every orientation over the Euler angle space (α,β,γ)

• Produces an activation map in Euler angle space

• Sph. Conv. enables KamNet to learn spherical features regardless of orientation 

• Subsequent convolutions learn filters over the Euler angle space
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Accepted

Rejected as Background

KamNet: Training

• KamNet trained on simulated MC events of each
• Xe136 - 2νββ, 2 electrons

• Bi214 - Decay, 1 electron and 1+ gammas

• Bi214 is present in the detector as radioactive contaminant

• Bi214 is chosen for background as it is easily isolated in the 
real experiment by coincidence with secondary alpha 
decay

• KamNet outputs a single value for each event, a 
KamNet score

• Score describes how “signal-like” or “background-like” an 
event is

NPML 2023 13



Hasung Song

KamNet: Evaluating Performance

• Used bootstrapping technique to evaluate 
KamNet’s performance and consistency
• Train many instances of KamNet with different 

random samplings of training data

• Measure each of these bootstrapped models’ 
background rejection efficiency

• Rejection Efficiency: percentage of backgrounds 
rejected when accepting 90% of the signal

• Also found good Data-MC agreement in KamNet 
performance
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Latest Results:𝑇1/2 > 2.3 × 1026𝑦𝑟𝑠 (90% C.L.)
• First search for 0nubb in the Inverted Ordering region!
• Total Livetime of 523 days, 970 kg·yrs of exposure
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KamNet: Interpretability
• KamNet can separate electron-only signal events 

from a mixture of electron-gamma backgrounds 

• How does KamNet do this?
• What features are important to KamNet?

• What kinds of events are easier/harder to classify?
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Single-Site vs Multi-Site
• Hypothesize that KamNet uses the multi-site nature of 

gammas to distinguish between electron-only events 
and electron-gamma mixed events

• Emitted gammas in KamLAND-Zen typically Compton 
scatter a few times, “kicking” electrons that then 
deposit energy in the scintillator

• In contrast, electron-only events, deposit all their 
energy within a few millimeters of their emission point

• We test this hypothesis by simulating a specialized 
dataset

γ
γ

γ

β-

β-
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Single vs Multi-Scatter
• Trained KamNet to identify events where 

gammas deposit energy multiple times in KLZ.

• Trained with simulated 3 MeV gammas 
separated by the number of sites

• single-site events (signal)

• multi-site events (background)

• KamNet performs well at separating single site 
gammas from multiple site events
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Comparing Differently Trained KamNets
• 2 KamNets trained for different tasks have well 

correlated outputs
• Electron-only vs Electron-gamma-mixed Identifier

• Single vs Multi-Site Identifier

• Ran the same 3 MeV gamma dataset through both 
models

• Found that their outputs are well-correlated which is a 
strong indicator KamNet is using the multi-site nature 
of gammas to separate backgrounds
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Modeling Cosmic Ray 
Correlation with PointNet
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Modeling Cosmic Ray Correlation 

• Can also model radioactive decay correlation with cosmic ray muons

• Train a PointNet to model this correlation
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• PointNet is a neural network architecture designed for 3D point clouds

• Input: the reconstructed neutron capture vertices within 160cm of subject radioactive 
decay

• dT, time delay from latest muon, is piped directly to the final MLP layer
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PointNet Performance

• PointNet successfully identifies events coincident 
with cosmic ray muons

• 49% tagging efficiency while falsely tagging 10% 
of Xenon-136 decays
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PointNet: Including Muon Tracks

• Added displacement (x, y, z) from recent muon track for each neutron capture 
vertex

• Coincidence tagging improves by 3%
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PointNet: Including Muon Tracks
• We reconstruct energy deposition profile (dE/dx) of cosmic ray muon tracks in 

KamLAND

• Include the energy deposited (integrated dE/dx) within 20cm of muon track nearest 
to each neutron capture vertex

• Coincidence tagging efficiency improves to 53%
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Coincidence Tagging with Decision Trees
• Geological Antineutrino searches in KamLAND look for coincident positron-gamma 

events

• Anti-electron neutrino is captured by a proton via inverse beta decay, the free 
neutron is captured ~200 µsec later

• Can use machine learning to identify individual particles and model coincidence
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Coincidence Tagging with Decision Trees
• Trained a Graph Neural Network to perform PID between positrons and gammas

• A boosted decision tree model (XGboost) to identify true positron-gamma 
coincidences from accidental coincidences

• Input separation paramters (Ep, Ed, Rp, Rd, dR, dT)

• Achieved accuracy of 96%

• Plan to add more input parameters including PID score from NN
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Detector Calibration with GANs
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KamLAND is Evolving
• KamLAND detector conditions are changing everyday

• Detector calibration gets more difficult

• To avoid radioactive contamination, we have not deployed any calibration sources 
since KLZ-400

• The goal is to use high-statistics, well-understood backgrounds to perform 
calibration

• A task well suited for Machine Learning?
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Current Simulation Scheme

• Physics and Detector Geometry

• Physics model & Geometry

• Material (LS, XeLS, …) properties

• Light emission

• Absorption length

• Decay time constants

Let's assume to be well tuned from initial data 

before purification

• Detector Characteristics

• Q.E. & C.E. for each PMT

• Time and Charge resolutions (for each PMT)

• Electronics Effects

• Dark hits / after pulses

Can we tune these with ML?
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Geant4 Simulation:
Physics Model

GTQ Map GTQ Map DTQ Map

# of photons, time of 
arrival at each PMT

Detected Event
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Current Status of Detector Calibration

• We observe the charge PDF for each PMT run-by-run

• We fit a single time resolution PDF for every PMT

• Dark hit rate for each PMT

• Quantum Efficiency for each PMT

• Threshold effects, electronics effects, etc.
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GammaTQ (GTQ, Photon hit 
time and charge for each pmt) 

DetectorTQ (DTQ, simulated 
detector events for analysis)

Detector simulation tuned by 
above methods
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Graph U-Net Generative Adversarial Network (GAN)
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Real/Fake 
DTQ
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Results
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• Training successful
• Generated events look like the training 

data, but
• Not enough dark hits were generated
• Charge and time resolution are too 

good
• Some strange features in distributions 
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CycleGAN: Unpaired Image to Image Translation
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• Implemented CycleGan to learn detector characteristics (GTQ -> DTQ)

• The task is to learn a model for translating images from one domain to another domain

• Could use a GAN if we had paired images, but we do not have access to the GTQ maps in 
real data

• CycleGAN is a method that learns image-to-image translation with unpaired images

1703.10593
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CycleGAN Training
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DTQ

GTQ

G_gtq2dtq

Fake 
DTQ

D_DTQ

D_GTQ
G_dtq2gtq

Fake
GTQ

Extra 
Fake 
DTQ

Extra 
Fake 
GTQ

Consistency Loss
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CycleGAN Results
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• NN does start learning features, but it takes a few days to reach even this level of 
performance

• We are considering faster models, other methods
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Future ML Work
• Evaluation of KamNet systematic uncertainties is ongoing

• Further interpretability studies

• Improvements to background tagging/coincidence modeling

• Using ML to calibrate the KamLAND detector

• Combining KamNet-like event topology identification and PointNet cosmic ray muon 
coincidence model for comprehensive long-lived spallation rejection
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Looking to the Future: KamLAND2-Zen
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Scintillating Inner Balloon 
Film for better tagging of 
film backgrounds

Deadtime free electronics (RFSoC) for 
better neutron capture tagging

Higher lightyield 
scintillator, high Q.E. 
PMTs, light collecting 
cones for x100 
reduction in 2nbb rate

Imaging LaPPD cameras to directly observe 
event topology, better rejecting radioactive 
backgrounds. We estimate ~90% rejection
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Looking to the Future: KamLAND2-Zen
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• Target : 𝑻𝟏/𝟐 > 𝟐. 𝟎 × 𝟏𝟎𝟐𝟕𝒚𝒓, full coverage of the Inverted 

Ordering Region
• Construction begins in 2025
• Comissioning and first data in 2026 
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Summary

• Spherical Convolutional Neural Networks (KamNet) have opened our eyes to event 
topologies in KamLAND-Zen

• Graph Neural Networks have also been successful at Particle Identification

• GNNs are also used to model correlation between radioactive backgrounds and their 
cosmic ray muon progenitors

• Boosted Decision Trees have been used to identify coincident signals

• CycleGAN has been tested as a method for detector calibration

• KamLAND2 will offer new challenges and opportunities for applying ML techniques
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Backups
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Increasing KamLAND’s Fiducial Volume

• Careful manufacture and washing of 
the inner balloon reduced 
contamination to:
• 238U ~ 3 x 10-12 g/g

• 232Th ~ 4 x 10-11g/g

• 10x reduction from KLZ-400

DNP 2021Hasung Song 10/14/21Hasung Song

Hotspot at the bottom of the 
balloon from settling 
radioactive dust
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• KamNet’s rejection of radioactive film backgrounds allows 
us to increase the fiducial volume, increasing our 
exposure to Xe136
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KamNet: Cosmic Spallation Isotopes
• Evaluated KamNet performance on different 

spallation isotope backgrounds
• Ran isotope decay events through Bi-214 bootstrapped 

models

• Ask why certain isotope decays are easier to reject 
than others

• Found that KamNet performance correlates with 
average gamma energy 

NPML 2023 43



Hasung Song NPML 2023 44



Hasung SongHasung Song

0νββ : Neutrino Masses? Ordering?

• The 0νββ half-life is directly related to the 
overall neutrino mass scale:

𝑇1/2
0𝜈 −1

= 𝐺0𝜈 𝑀0𝜈 2𝑚𝛽𝛽
2

• 𝐺0𝜈: Phase Space Factor

• 𝑀0𝜈 2 : Nuclear Matrix Element

• 𝑚𝛽𝛽 = σ𝑖 𝑈𝑒𝑖
2 𝑚𝑖: effective Majorana mass

• Unknown neutrino mass ordering leaves two 
regions where 0νββ could be observed

• A measurement of the 0νββ half-life 
corresponds to a measurement of the 
effective Majorana mass

45
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Neutrinoless Double Beta Decay

• KamLAND-Zen is looking for Neutrinoless Double Beta 
Decay, 0νββ, a single measurement that can answer 
multiple questions about neutrinos

• Certain isotopes can undergo Double Beta Decay
• Exceptionally slow nuclear process 𝑇1/2~1014−24 years

• Decay energy is split between neutrinos and electrons

• If the neutrino is a Majorana particle, this process can 
occur without emitting a pair of anti-electron neutrinos

• Electrons carry away all the decay energy
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