
Identifying Particles and Neutrino Final States with 
Convolutional Neural Networks in MicroBooNE

Matthew Rosenberg (Tufts University)

8/22/2023

2023 Neutrino Physics and Machine Learning Conference



  

2

Overview
● A brief overview of:

– The MicroBooNE detector
– The motivation for new deep-learning-based reconstruction tools
– LArMatch: a new U-NET CNN developed by Taritree Wongjirad to reconstruct 3D points from 2D LArTPC images

● Main focus: LArPID, a new CNN to classify 3D tracks and showers produced in the LArMatch-based 
MicroBooNE reconstruction
– Development / training
– Performance
– Preliminary studies on interpreting the model
– Utility in identifying neutrino final states in MicroBooNE

●  Initial results for an inclusive CC νe selection

● Applicability in other reconstruction frameworks and LArTPC detectors
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The MicroBooNE Detector
● A LArTPC located in the Booster Neutrino Beam at Fermilab

– Designed with a primary aim of studying the MiniBooNE low-energy excess
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The MicroBooNE Detector
● A LArTPC located in the Booster Neutrino Beam at Fermilab

– Provides the capability to image neutrino interactions with mm-scale precision
● This allows for the use of powerful computer vision techniques to reconstruct neutrino interactions
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A New Deep-Learning-Based Reconstruction Framework

● A previous DL-based reconstruction directly searched (in 2D) for “v-shaped” 1e1p vertices from quasi-elastic CC νe events
– P. Abratenko et al. (MicroBooNE), Phys. Rev. D 105, 112003 (2022)

– Designed to test hypothesis that MiniBooNE excess was produced by quasi-elastic CC νe interactions

● A new, more general reconstruction paradigm:
– Use LArMatch, a U-NET CNN developed by Taritree Wongjirad, to find 3D energy-deposition points from 2D images

– Cluster tracks and showers (prongs) in 3D
– Use LArPID, a new CNN, to attach particle labels to 3D prongs by analyzing associated pixels in 2D images

● Much more on this later

Outputs used for downstream 3D reconstruction
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Reconstruction Example: LArMatch Input

Zoomed in view of probable CC ν
e
 interaction from open data:



Reconstruction Example: LArMatch True Energy Deposit Output

LArMatch Output
Color scale: true energy deposit score
                    Purple:0.0 → Yellow: 1.0

Beam Direction
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Reconstruction Example: LArMatch Neutrino Keypoint Score Output

Neutrino Keypoint Score (ghost points removed)
Color scale: Score inverse to distance to keypoint
                    Yellow: 1.0 (0 cm) → purple 0.0 (>10 cm)
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LArMatch Neutrino Vertex Resolution
● In MC, 68% of reconstructed neutrino vertices are within 9.2mm of simulated interaction position

– Wire spacing is 3mm, so this is within 3 wires, which is quite good



Reconstruction Example: LArMatch Track Start Score Output

Track Start Keypoint Score (ghost points removed)
Color scale: Score inverse to distance to keypoint
                    Yellow: 1.0 (0 cm) → purple 0.0 (>10 cm)
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Reconstruction Example: LArMatch Track End Score Output

Track End Keypoint Score (ghost points removed)
Color scale: Score inverse to distance to keypoint
                    Yellow: 1.0 (0 cm) → purple 0.0 (>10 cm)
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Reconstruction Example: LArMatch Shower Start Score Output

Shower Start Keypoint Score (ghost points removed)
Color scale: Score inverse to distance to keypoint
                    Yellow: 1.0 (0 cm) → purple 0.0 (>10 cm)
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Reconstruction Example:
Vertexing & Track/Shower Clustering

Reconstructed Nu Candidate
1 Track (green hits, cyan path)
1 Shower (copper hits, red line) 

e - drift direction

Beam Direction

Shower trunk obscured in both U and V 
plane → leads to missing shower trunk in 
3d hits, but seen by 2D CNN in Y plane
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The LArPID Network
● A CNN to classify reconstructed 3D tracks and showers

– Similar to work by NOvA: PhysRevD.100.073005

● Does particle identification (PID)
– Outputs five score indicating how likely that the input is a muon, pion, proton, photon, or electron

● Outputs reconstruction quality metrics
– Completeness prediction: fraction of true particle reconstructed in input track/shower
– Purity prediction: fraction of reconstructed track/shower that was created from true particle

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.100.073005
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LArPID: Training Sample
● Trained on reconstructed tracks and showers attached to LArMatch-identified neutrino vertices 

from MicroBooNE neutrino Monte Carlo simulations
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LArPID: Image Preprocessing

● In 2D images, select all pixels 
included in 3D prong hits

● Crop to 512 x 512 window. 
Center prong in image if it fits, 
otherwise crop around prong 
end point (if it’s a track) or 
start point (if it’s a shower)

● Normalize pixel values 
(subtract mean, divide by 
standard deviation)

● Provide full event images 
(with cosmics removed) along 
with prong images
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LArPID: Network Architecture
● Use tried and tested ResNet architecture (arXiv:1512.03385)
● Limit CNN depth to 34 layers due to computational constraints

https://arxiv.org/abs/1512.03385
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LArPID: Training
● Use learned weights to combine losses from three tasks (arXiv:1705.07115)

– Loss = exp(-scr)Lcr + exp(-spr)Lpr + 2exp(-spc)Lpc + scr + spr + spc 
● Lcr = mean square error completeness regression loss
● Lpr = mean square error purity regression loss
● Lpc = cross entropy particle classification loss

● Training sample: on the order of 100k prongs (tracks/showers) of each particle type (electrons, photons, muons, 
pions, and protons)
– Weight Lpc contributions to account for class imbalance

● Validation sample:
– 10k prongs, 2k per particle type

● Training
– Data augmentation: randomly flip input images
– Trained for 20 epochs with a variable learning rate scheduler:

https://arxiv.org/abs/1705.07115
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LArPID: Training/Development Lessons Learned
● Model wouldn’t learn with batch normalization, used instance normalization instead

– I suspect this has to do with the sparsity of LArTPC images, and the difficulty this presents in calculating representative running averages in 
batch normalization layers

● Using learned loss weights in multi-task loss provides better performance than adding loss functions with hard-coded weights, 
regardless of choice of weight values

● Adding completeness and purity regression tasks neither hurt nor helped particle classification performance
● Including small, low-purity tracks/showers in training did not make model’s performance on larger, better reconstructed 

particles any worse
● Increasing depth of final classification/regression MLPs made it much more difficult for the model to learn and did not provide 

any boost in performance
● The “single cycle cosine annealing” learning rate scheduler is a good choice for this task, outperformed other learning rate 

choices:
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LArPID: Particle Classification Results

Validation Sample Accuracy Statistics

True 
electrons

True 
photons

True 
muons

True 
pions

True 
protons

Fraction 
classified 

as electrons
83.5% 4.8% 0.1% 0.4% 0.1%

Fraction 
classified 

as photons
13.3% 94.7% 0.1% 0.2% 0.2%

Fraction 
classified 
as muons

0.4% 0% 93.6% 12.1% 0.2%

Fraction 
classified 
as pions

2.7% 0.4% 6.1% 85.9% 1.4%

Fraction 
classified 
as protons

0.2% 0.2% 0.2% 1.5% 98.2%

● Results shown with true prong purity > 0.6 cut for accurate labels
● Overall validation accuracy: 91.1%
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LArPID: Completeness and Purity Results
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LArPID: Interpreting the Model
● In progress: image manipulation studies designed to understand what information the model is using to make decisions

electron score = -3.63, photon score = -0.03 electron score = -1.53, photon score = -0.25
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LArPID: Interpreting the Model
● In progress: image manipulation studies designed to understand what information the model is using to make decisions

electron score = 0, photon score = -7.02, 
pion score = -6.02

electron score = -0.01, photon score = -5.03, 
pion score = -8.63

electron score = -7.87, photon score = 0, 
pion score = -12.84
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An Inclusive CC ν
e
 Selection with New

 DL-Based Reconstruction

● Will show that new DL-based reconstruction utilizing LArMatch and LArPID networks are 
competitive in selecting CC νe events in MicroBooNE
– Great potential to improve the sensitivity of future MicroBooNE analyses

● Selection simply utilizes:
– Basic reconstruction quality cuts

● Neutrino vertex found by LArMatch, doesn’t overlap with tagged cosmic activity

– Cuts on LArPID particle scores
● No muon tracks
● One forward-going electron shower identified with high confidence (high electron score, low photon and pion scores)
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Preliminary Inclusive CC ν
e
 MC Selection Results

● Backgrounds included: cosmic, CC numu, NC numu, and NC nue
● Selection purity above 80%, efficiency rises above 60% around 1 GeV
● Caveat: MC samples used to calculate purity and efficiency numbers were also used in prong CNN training (additional MC simulation 

not available in time)
– Large training sample, not much over-fitting 

● Selection is preliminary, performace will increase as selection criteria are refined
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Testing the CC ν
e
 Selection on Data

● We ran our new selection on a small MicroBooNE open data set
● New probable CC νe events were found!

– Event displays for four low-energy probable CC νe events not identified in other 
reconstruction frameworks are shown on the following slides
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New Low-Energy Event 
Found by CC ν

e
 Selection

Reconstructed neutrino energy: 197.3 MeV
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New Low-Energy Event 
Found by CC ν

e
 Selection

Reconstructed neutrino energy: 305.6 MeV
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New Low-Energy Event 
Found by CC ν

e
 Selection

Reconstructed neutrino energy: 318.6 MeV



  

30

New Low-Energy Event 
Found by CC ν

e
 Selection

Reconstructed neutrino energy: 411.8 MeV
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Conclusions
● New DL-based MicroBooNE reconstruction framework with LArMatch and LArPID in place

– Good neutrino vertex resolution, track/shower clustering, and particle identification

– Allows for competitive CC νe selection that can find new events in open data
● Further improvements expected!

– Great potential to improve the sensitivity of future MicroBooNE analyses

● Applicability in other reconstruction frameworks and LArTPC experiments
– Work ongoing to implement LArMatch in SBN
– Should be easy to retrain LArPID network for other reconstruction frameworks used by MicroBooNE, 

SBN (ICARUS and SBND), and DUNE
● Currently collaborating with Wanwei Wu and Donna Naples at the University of Pittsburgh to implement LArPID in 

the Pandora reconstruction framework (used in all of these LArTPC experiments)
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