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Why UQ in ML models?

In short: high-regret problems

Faster analysis of medical images

The Self-Driving Cars Wearing a
Cone of Shame

There’s a brilliant activist campaign to stop San Francisco’s autonomous
vehiclesin their tracks.

BY ALISON GRISWOLD JULY 11,2023 - 10:45 AM

Algorithm makes the process of comparing 3-D scans up to 1,000 times fas Uber Self-dering car CI'aSheS during US teStS

Rob Matheson | MIT News Office

June 18,2018

The Uber SUV on its side following the accident in Tempe, Arizona © Reutt

Collision threatens plans to bring high levels of autonomy into commercial use

,inaway, it is). Screengrab from TikTok/Safe Street Rebel
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Uncertainty in ML

Aleatoric - Uncertainty arising from inherent randomness of sampling.

Aleator - one who rolls the dice

Epistemic - Uncertainty arising from choices of model which do not fully describe
a modelled process

Search...

a I‘(lv > ¢s > arXiv:1703.04977

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 15 Mar 2017 (v1), last revised 5 Oct 2017 (this version, v2)]

What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?

https://arxiv.org/abs/1703.04977 Alex Kendall, Yarin Gal

There are two major types of uncertainty one can model. Aleatoric uncertainty captures

noise inherent in the observations. On the other hand, epistemic uncertainty accounts for
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How to Characterize Uncertainty in a Model

Aleatoric - The model can predict a distribution which maps out the underlying
distribution of the training set instead of a modal outcome — Probabilistic Neural

Network

Epistemic - One method of approximating a bayesian NN: the model can be
altered at inference time by enabling high-probability (50%) dropout layers —
Monte Carlo Dropout
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What is a PNN?

A Probabilistic Neural Network (PNN)
aims to predict an underlying distribution =
from which a given image might be =
sampled. This is a way of estimating
heteroscedastic (different for each input) -
aleatoric uncertainty

This is implemented by predicting both a
mean and an uncertainty term for each

voxel and using a NLL loss Ex :
J log £ = Z —— i) —

1E€voxels
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What is Monte Carlo Dropout?
p(rixf))/" R

Monte Carlo Dropout is a
method for stochastically i
changing your model in
order to approximate a
posterior distribution of a
model’s prediction

= | I'\]_V > stat > arXiv:1506.02142

Help | Advanc

Statistics > Machine Learning

[Submitted on 6 Jun 2015 (v1), last revised 4 Oct 2016 (this version, v6)]

Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning

https://arxiv.org/abs/1506.02142

Yarin Gal, Zoubin Ghahramani
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How Confident Are We?

Our reco chain is models after models after models after models...
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Let’s Simplify: 2-Model UQ

Question: Does including uncertainty in the predictions of an upstream model at
training time improve the accuracy or robustness of a downstream reconstruction

model?
Primary _
Detector Inver.se Particle Primary
output —»  Imaging > Classifier particle label
i ' Model
(or simulation) Energy Model
distribution

within detector
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Let’s Simplify: 2-Model UQ

Question: Does including uncertainty in the predictions of an upstream model at
training time improve the accuracy or robustness of a downstream reconstruction

model?
Primary :
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The DUNE Near Detector LArTPC
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Consists of a 5 x 7 array
of dual-TPC modules
positioned ~570m from

the neutrino beam source
at FNAL.

Each 1m x 1m x 3m
module has two anode

planes made of 4.434
mm square pixels.
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Building the Training Data

Hits (scatter points) and Geant4
segments (lines) are not perfectly
aligned, particularly along the drift
direction, where induction tends to
produce “early” (~0.5 mm) hits.

—62
—64g
—66 £
—O8 N
—70

To accommodate the mismatch in
domains of the sparse images,
zero-padding is added around the two
point clouds (simulated hits and 225 00 725 pagn 775 80.0
voxelized Geant4 tracks) y (rirm]
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" Convolution
B Residual Block
| Dropout Block

8 DownSample
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Y voxel index

Y voxel index

Running the Inverse Model on a Single Event
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Inferred Energy [MeV/voxel]

100 4

Voxel-to-voxel inference works
well overall, but fails in areas with
high levels of stochasticity, and

disconnected blips
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Y voxel index

Y voxel index
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Voxel-to-voxel inference works
well overall, but fails in areas with
high levels of stochasticity, and
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Voxel Occupancy

Occupancy output quickly converges to
92% true positive rate

The epistemic uncertainty on this
classification scheme (derived from MC
Dropout) is ~0.1%
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True Occupancy

Filled

Empty -

Inferred Occupancy
Flled Empty
1
92.0 £ 0.1% 4.5 =+ 0.0%
(3810.3 + 2.57) (296.7 + 2.57)

8.0 £ 0.1% 95.5 + 0.0%
(332.4 £ 2.46) (6260.6 + 2.46)




Distribution of Regressed Voxel Means

Good voxel-to-voxel matching with
some obvious errors

low-G.T. voxels tend to be
over-predicted

101

Higher- (and less common) valued
G.T. voxels are under-predicted

Predicted Energy per Voxel [MeV]

This seems to be a regression
towards the mean value

T T T T T T T 100
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

G.T. Energy per Voxel [MeV]
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1-D Spectra of Voxels
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Some specific features which are
hard to map out

MIP peak is over-populated in
prediction

Above-threshold continuum voxels
show a feature (distribution of voxel
crossing angles) which is not
well-replicated by the model



Regressed Voxel Uncertainties

Comparing MC 10t e
Dropout-derived uncertainty L, [ PNN Uncertainty
and PNN output uncertainty = UL L‘T

indicates that aleatoric 1

uncertainty is the dominant B |

source of prediction error for o

this model f i
This is typical for LWH
regression-type problems 100 TIL‘ JlLﬂ L

0.0 5 .0

Prediction Uncertainty [MeV]

;ys/% \ U.S. DEPARTMENT OF Stanford
EN ERGY University D. Douglas



Regressed Voxel Uncertainties

The mOdel pred|CtS . Ordered Prediction Intervals
appropriately large
Uncertalnt|es When It |S Tg *] . [ residual / predicted uncertainty
unsure of a voxel’s value |£ ,.
& Ik
i
Errors are .not_ exactly ) bt 00‘.0_‘,»-«'* ‘.6,;..‘:
normally distributed 2 :,.:.%~~‘~°
® Predicted Values
- = Observed Values

=1

T T T T T T
0 10 20 30 40 50
Index (Ordered by Observed Value)

0.0

-3 -2 -1 0 1 2 3
Prediction Z-Score
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Observed Proportion in Interval

e | Y g \ ¥
Predicted Uncertainty Calibration
Average Calibration Accuracy Metrics
i MAE 0.224
RMSE 0.411
e MDAE 0.125
el : : MARPD 31.391
This quel is Ro 0.601
-l well-calibrated for Correlation 0.791
non-zero voxels, Sharpness Metrics
Sharpness 0.439
0.4 - Scoring Rule Metrics
but lacks sharpness Negative-log-likelihood -0.020
CRPS 0.163
0.2 1 Check Score 0.082
Interval Score 0.834
Miscalibration area = 0.02
0.0 . . : . :
0.0 0.2 0.4 0.6 0.8 1.0
Predicted Proportion in Interval https://github.com/uncertainty-toolbox/uncertainty-toolbox
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Next Up: Uncertainty-Enabled Reco Model

-

x4

S |

ResNet Encoder

J Global Average

Pooling

~

Cross-Entro
py Loss

1-D Feature Vector

Dense Layers

D. Douglas

Downstream
analysis model is
still under
construction!

Please stay
tuned!
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Downstream Applications
Of Inverse Model
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Unsupervised Learning with Differentiable Sim

Using a simulator with
auto-differentiation (See Yifan Chen’s Detector

tput-lik
talk earlier today), / Ouszgcé e \
A network like this can be trained

unsupervised, evaluating losses in an e Inverse
Geant4-like space, and propagating Solver
gradients through the simulator

Alternatively, we can deploy this loop Geant4-like

directly on data! Must be careful to space

avoid inducing bias in calibration, etc.
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Detector-agnostic Reconstructions

If detector-specific responses can be unmapped into generic edep-sim like format,
they can be the first translation layer for a more generic ML reco

This reconstruction can be more robust and shared between
detectors/experiments, reducing duplication of effort

Inverse ND Generic ML >

Model B Reco Fljeies

ND Output -9

v

Inverse FD .-

FD Output -9 Model

D. Douglas
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Summary

e Basic uncertainty quantification can be a simple modification to your existing
models, no need for a full Bayesian NN!

e Toolkits like the uncertainty toolbox exist and are developed with simple
interfaces for machine learners, particularly in physics

e The inverse mapping model described here is a toy for understanding
uncertainty quantification in chained models, but is also aimed at interfacing
with differentiable simulators and downstream (detector-agnostic)
reconstructions
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https://github.com/uncertainty-toolbox/uncertainty-toolbox
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Hit Formation

Drift Paths

2 (cm)

Charge clouds drift to the anode plane
Voltage is induced on the surfaces of electrodes

Pixel electronics register a “hit” and digitize charge after a
threshold is reached + 8 clock cycles (10 MHz)

Measurement is (pixel address, timestamp, ADC value)
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Tiiduced Clurrent c
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L | ") g \
Regressed Voxel Uncertainties
Model is well-calibrated: 68% of the
predicted errors cover the observed errors mL _ _ -
The predicted error shows a dependence . S _//"/
upon the voxel value and the magnitude = . s e
of the true error — 125 T :_. . :,,." “a .
A g o BB O
§0.75 B "1, -
£ — ==
0.50 o B
0.25 A - o

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
True Error |I_:‘— E| [MeV]
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Block Definitions

e =

e e e e - - -

=8
=8

\ l
Residual Block Dropout Block
BatchNorm Convolution Conv 2X2X2, Stride 2
" ReLU " Dropout Conv 2X2 X2 Transpose
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Block Definitions, Continued

e =

=8
___1__
=8

DownSample Block

BatchNorm Convolution Conv 2X2X?2, Stride 2

" ReLU " Dropout Conv 2X2 X2 Transpose
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' Dropout Layers are

" included if the previous
' block has a dropout

| layer



