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Uncertainty Quantification
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In short: high-regret problems

Why UQ in ML models?
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Uncertainty in ML
Aleatoric - Uncertainty arising from inherent randomness of sampling. 

Aleator - one who rolls the dice

Epistemic - Uncertainty arising from choices of model which do not fully describe 
a modelled process

https://arxiv.org/abs/1703.04977
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How to Characterize Uncertainty in a Model
Aleatoric - The model can predict a distribution which maps out the underlying 
distribution of the training set instead of a modal outcome – Probabilistic Neural 
Network

Epistemic - One method of approximating a bayesian NN: the model can be 
altered at inference time by enabling high-probability (50%) dropout layers – 
Monte Carlo Dropout 
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What is a PNN?
A Probabilistic Neural Network (PNN) 
aims to predict an underlying distribution 
from which a given image might be 
sampled.  This is a way of estimating 
heteroscedastic (different for each input) 
aleatoric uncertainty

This is implemented by predicting both a 
mean and an uncertainty term for each 
voxel and using a NLL loss

predicted
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What is Monte Carlo Dropout?
Monte Carlo Dropout is a 
method for stochastically 
changing your model in 
order to approximate a 
posterior distribution of a 
model’s prediction

https://arxiv.org/abs/1506.02142
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ML in LArTPC’s
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How Confident Are We?
Our reco chain is models after models after models after models…
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Let’s Simplify: 2-Model UQ 
Question: Does including uncertainty in the predictions of an upstream model at 
training time improve the accuracy or robustness of a downstream reconstruction 
model?
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Let’s Simplify: 2-Model UQ 
Question: Does including uncertainty in the predictions of an upstream model at 
training time improve the accuracy or robustness of a downstream reconstruction 
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larnd-sim Inverse Solver Model
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The DUNE Near Detector LArTPC
Consists of a 5 × 7 array 
of dual-TPC modules 
positioned ~570m from 
the neutrino beam source 
at FNAL.

Each 1m × 1m × 3m 
module has two anode 
planes made of 4.434 
mm square pixels.𝜈
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The Spaces
larnd-sim

Geant4 Segments Simulated Detector Hits



D. Douglas

The Spaces
larnd-sim

Inverse mapping

Geant4 Segments Simulated Detector Hits
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Building the Training Data
Hits (scatter points) and Geant4 
segments (lines) are not perfectly 
aligned, particularly along the drift 
direction, where induction tends to 
produce “early” (~0.5 mm) hits.

To accommodate the mismatch in 
domains of the sparse images, 
zero-padding is added around the two 
point clouds (simulated hits and 
voxelized Geant4 tracks)
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Training on 
single-primary-particle images 
in DUNE ND-LAr geometry

Primary particles are: 

π+, γ, e, μ, p

Primary Energies of 20 MeV - 
500 MeV

Ground Truth is the voxelized 
(pixel-sized voxels) G4 input 

Training Set 
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Upstream Model: Inverse Imaging DUNE ND-LAr

μ
σ

Convolution

Residual Block

Dropout Block UpSample

DownSample

filled

✕2
NLL
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+
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Running the Inverse Model on a Single Event
Voxel-to-voxel inference works 
well overall, but fails in areas with 
high levels of stochasticity, and 
disconnected blips

True

Reco
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Voxel Occupancy
Occupancy output quickly converges to 
92% true positive rate

The epistemic uncertainty on this 
classification scheme (derived from MC 
Dropout) is ~0.1%
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Distribution of Regressed Voxel Means
Good voxel-to-voxel matching with 
some obvious errors

low-G.T. voxels tend to be 
over-predicted

Higher- (and less common) valued 
G.T. voxels are under-predicted

This seems to be a regression 
towards the mean value
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1-D Spectra of Voxels
Some specific features which are 
hard to map out

MIP peak is over-populated in 
prediction

Above-threshold continuum voxels 
show a feature (distribution of voxel 
crossing angles) which is not 
well-replicated by the model
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Comparing MC 
Dropout-derived uncertainty 
and PNN output uncertainty 
indicates that aleatoric 
uncertainty is the dominant 
source of prediction error for 
this model

This is typical for 
regression-type problems

Regressed Voxel Uncertainties
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The model predicts 
appropriately large 
uncertainties when it is 
unsure of a voxel’s value

Errors are not exactly 
normally distributed

Regressed Voxel Uncertainties
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Predicted Uncertainty Calibration

This model is 
well-calibrated for 
non-zero voxels, 

but lacks sharpness

https://github.com/uncertainty-toolbox/uncertainty-toolbox

Accuracy Metrics
  MAE           0.224
  RMSE          0.411
  MDAE          0.125
  MARPD         31.391
  R2            0.621
  Correlation   0.791
Sharpness Metrics                                                            
  Sharpness                      0.439
Scoring Rule Metrics
  Negative-log-likelihood   -0.020
  CRPS                              0.163
  Check Score                    0.082
  Interval Score                   0.834
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Next Up: Uncertainty-Enabled Reco Model

ResNet Encoder
1-D Feature Vector

Cross-Entro
py Loss

×4

Global Average 
Pooling

Dense Layers

WORK IN 

PROGRESS

Downstream 
analysis model is 
still under 
construction!

Please stay 
tuned!
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Downstream Applications
Of Inverse Model
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Unsupervised Learning with Differentiable Sim
Using a simulator with 
auto-differentiation (See Yifan Chen’s 
talk earlier today),

A network like this can be trained 
unsupervised, evaluating losses in an 
Geant4-like space, and propagating 
gradients through the simulator

Alternatively, we can deploy this loop 
directly on data!  Must be careful to 
avoid inducing bias in calibration, etc.

Diff-Sim Inverse 
Solver

Geant4-like
space

Detector 
output-like 

space
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Detector-agnostic Reconstructions
If detector-specific responses can be unmapped into generic edep-sim like format, 
they can be the first translation layer for a more generic ML reco

This reconstruction can be more robust and shared between 
detectors/experiments, reducing duplication of effort

ND Output Inverse ND 
Model

Generic ML 
Reco

FD Output Inverse FD 
Model

Physics
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Summary
● Basic uncertainty quantification can be a simple modification to your existing 

models, no need for a full Bayesian NN!
● Toolkits like the uncertainty toolbox exist and are developed with simple 

interfaces for machine learners, particularly in physics
● The inverse mapping model described here is a toy for understanding 

uncertainty quantification in chained models, but is also aimed at interfacing 
with differentiable simulators and downstream (detector-agnostic) 
reconstructions 

https://github.com/uncertainty-toolbox/uncertainty-toolbox
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BACKUP
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Hit Formation

∑

Charge clouds drift to the anode plane

Voltage is induced on the surfaces of electrodes

Pixel electronics register a “hit” and digitize charge after a 
threshold is reached + 8 clock cycles (10 MHz)

Measurement is (pixel address, timestamp, ADC value)
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Regressed Voxel Uncertainties
Model is well-calibrated: 68% of the 
predicted errors cover the observed errors

The predicted error shows a dependence 
upon the voxel value and the magnitude 
of the true error
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Block Definitions
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Conv 2✕2✕2, Stride 2

Conv 2✕2✕2 Transpose

Block Definitions

≝

Residual Block

BatchNorm

ReLU

Convolution

Dropout

≝

Dropout Block
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Block Definitions, Continued

≝

DownSample Block

BatchNorm

ReLU

Convolution

Dropout

Conv 2✕2✕2, Stride 2

Conv 2✕2✕2 Transpose

≝

UpSample Block

Dropout Layers are 
included if the previous 
block has a dropout 
layer 


