

Uncertainty Quantification in Reconstruction in the DUNE-ND

D. Douglas For the SLAC Neutrino Group & ML Initiative Neutrino Physics and Machine Learning August 23, 2023

ZOOX

Uncertainty Quantification

Why UQ in ML models?

In short: high-regret problems

The Self-Driving Cars Wearing a Cone of Shame

There's a brilliant activist campaign to stop San Francisco's autonomous vehicles in their tracks.

BY ALISON GRISWOLD JULY 11, 2023 • 10:45 AM

Faster analysis of medical images Algorithm makes the process of comparing 3-D scans up to 1,000 times fast Rob Matheson | MIT News Office June 18, 2018

Uber self-driving car crashes during US tests

Collision threatens plans to bring high levels of autonomy into commercial use

The Uber SUV on its side following the accident in Tempe, Arizona © Reuters

n, in a way, it is). Screengrab from TikTok/Safe Street Rebel

Uncertainty in ML

<u>Aleatoric</u> - Uncertainty arising from inherent randomness of sampling.

Aleator - one who rolls the dice

Epistemic - Uncertainty arising from choices of model which do not fully describe a modelled process

https://arxiv.org/abs/1703.04977

Stanford

How to Characterize Uncertainty in a Model

<u>Aleatoric</u> - The model can predict a distribution which maps out the underlying distribution of the training set instead of a modal outcome – Probabilistic Neural Network

Epistemic - One method of approximating a bayesian NN: the model can be altered at inference time by enabling high-probability (50%) dropout layers – Monte Carlo Dropout

What is a PNN?

A Probabilistic Neural Network (PNN) aims to predict an underlying distribution from which a given image might be sampled. This is a way of estimating heteroscedastic (different for each input) aleatoric uncertainty

This is implemented by predicting both a mean and an uncertainty term for each voxel and using a NLL loss

What is Monte Carlo Dropout?

Monte Carlo Dropout is a method for stochastically changing your model in order to approximate a posterior distribution of a model's prediction

University

31×1V > stat > arXiv:1506.02142

Statistics > Machine Learning

Yarin Gal, Zoubin Ghahramani

.S. DEPARTMENT OF

ML in LArTPC's

How Confident Are We?

Our reco chain is models after models after models after models...

Let's Simplify: 2-Model UQ

Question: Does including uncertainty in the predictions of an upstream model *at training time* improve the accuracy or robustness of a downstream reconstruction model?

Let's Simplify: 2-Model UQ

Question: Does including uncertainty in the predictions of an upstream model *at training time* improve the accuracy or robustness of a downstream reconstruction model?

larnd-sim Inverse Solver Model

The DUNE Near Detector LArTPC

Consists of a 5 × 7 array of dual-TPC modules positioned ~570m from the neutrino beam source at FNAL.

Each 1m × 1m × 3m module has two anode planes made of 4.434 mm square pixels.

Building the Training Data

Hits (scatter points) and Geant4 segments (lines) are not perfectly aligned, particularly along the drift direction, where induction tends to produce "early" (~0.5 mm) hits.

To accommodate the mismatch in domains of the sparse images, zero-padding is added around the two point clouds (simulated hits and voxelized Geant4 tracks)

Training Set

Training on single-primary-particle images in DUNE ND-LAr geometry

Primary particles are:

π+, γ, e, μ, p

u.s. department of **ENERGY**

Primary Energies of 20 MeV -500 MeV

Ground Truth is the voxelized (pixel-sized voxels) G4 input

Stanford University

Upstream Model: Inverse Imaging DUNE ND-LAr

Running the Inverse Model on a Single Event

Voxel-to-voxel inference works well overall, but fails in areas with high levels of stochasticity, and disconnected blips

U.S. DEPARTMENT OF Stanford University

Voxel-to-voxel inference works well overall, but fails in areas with high levels of stochasticity, and disconnected blips

Voxel Occupancy

Occupancy output quickly converges to 92% true positive rate

The epistemic uncertainty on this classification scheme (derived from MC Dropout) is ~0.1%

Distribution of Regressed Voxel Means

Good voxel-to-voxel matching with some obvious errors

low-G.T. voxels tend to be over-predicted

Higher- (and less common) valued G.T. voxels are under-predicted

This seems to be a regression towards the mean value

1-D Spectra of Voxels

D. Douglas

DEPARTMENT OF

Stanford University Some specific features which are hard to map out

MIP peak is over-populated in prediction

Above-threshold continuum voxels show a feature (distribution of voxel crossing angles) which is not well-replicated by the model

Regressed Voxel Uncertainties

Comparing MC Dropout-derived uncertainty and PNN output uncertainty indicates that aleatoric uncertainty is the dominant source of prediction error for this model

This is typical for regression-type problems

Regressed Voxel Uncertainties

The model predicts appropriately large uncertainties when it is unsure of a voxel's value

Errors are not *exactly* normally distributed

Predicted Uncertainty Calibration

Stanford

University

.S. DEPARTMENT OF

This model is well-calibrated for non-zero voxels,

but lacks sharpness

Accuracy Metrics

MAE 0.224 RMSE 0.411 MDAE 0.125 MARPD 31.391 0.621 R2 Correlation 0.791 **Sharpness Metrics** Sharpness 0 4 3 9 **Scoring Rule Metrics** Negative-log-likelihood -0.020 CRPS 0.163 Check Score 0.082 Interval Score 0.834

https://github.com/uncertainty-toolbox/uncertainty-toolbox

Next Up: Uncertainty-Enabled Reco Model

D. Douglas

University

Downstream Applications Of Inverse Model

Unsupervised Learning with Differentiable Sim

Using a simulator with auto-differentiation (See Yifan Chen's talk earlier today),

A network like this can be trained unsupervised, evaluating losses in an Geant4-like space, and propagating gradients through the simulator

Alternatively, we can deploy this loop directly on data! Must be careful to avoid inducing bias in calibration, etc.

Detector-agnostic Reconstructions

If detector-specific responses can be unmapped into generic edep-sim like format, they can be the first translation layer for a more generic ML reco

This reconstruction can be more robust and shared between detectors/experiments, reducing duplication of effort

Acknowledgements

Thank you to K. Terao, D.H. Koh, A. Mishra, D. Ratner for assistance in developing both the problem and the solution!

Thank you to <u>ZOOX</u>, who funded this work in part

Thank you, the audience for your attention!

Summary

- Basic uncertainty quantification can be a simple modification to your existing models, no need for a full Bayesian NN!
- Toolkits like the <u>uncertainty toolbox</u> exist and are developed with simple interfaces for machine learners, particularly in physics
- The inverse mapping model described here is a toy for understanding uncertainty quantification in chained models, but is also aimed at interfacing with differentiable simulators and downstream (detector-agnostic) reconstructions

BACKUP

Hit Formation

 $z \ ({\rm cm})$

0.5

0.0

0.6

Drift Paths

Charge clouds drift to the anode plane

Voltage is induced on the surfaces of electrodes

Pixel electronics register a "hit" and digitize charge after a threshold is reached + 8 clock cycles (10 MHz)

Measurement is (pixel address, timestamp, ADC value)

Regressed Voxel Uncertainties

Model is well-calibrated: 68% of the predicted errors cover the observed errors

The predicted error shows a dependence upon the voxel value and the magnitude of the true error

Block Definitions

Block Definitions

Block Definitions, Continued

