

The RED-100 experiment

Dmitrii Rudik on behalf of RED-100 collaboration

MANANA MANANA MANANA

Outline

- Coherent Elastic v-Nucleus Scattering
- Two phase emission detector
- RED-100 at Kalinin NPP
- Data taking and analysis
- Background sources
- Problem which we are trying to solve with ML
- Summary

Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

Low recoil energy → difficult to detect

Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

First observations by COHERENT in 2017 and 2021

CEvNS around the World

Neutrino sources for CEvNS study

• Reactors

- Very high flux: ~ $10^{20} \overline{\nu}_e$ /s
- Lower recoil energy
- Reactor off data for the background constraint
- Pion decay-at-rest at accelerators
 - High flux: $\sim 10^{14} \nu_{\mu} / \nu_{e} / \overline{\nu}_{\mu} / s$
 - Higher recoil energy
 - Pulsed beam

$\widetilde{\nu_e}$ energy spectrum from nuclear reactor

Xe and Ar nuclear recoil spectra

 Reactors antineutrinos produce nuclear recoils with very low recoil spectra

Rudik Dmitrii, The RED-100 experiment

Ionization yield for sub-keV nuclear recoils

- Several ionization electrons in the region of interest
- The detector must be able to detect a signal of a Single Electron (SE)

By NEST collaboration

Two-phase emission detector technique

Sensitive to the single ionization electron (SE) signal. CEvNS response is expected Time to be of several electrons. S2 Typical single electron (SE) signal in RED-100 () m 0 -20**Photodetectors S**2 e e E (photomultipliers) -100-120Drift time indicates depth Particle 238 241 242 239 240 **S1** ionization electrons V scintillation photons (~175 nm) By LUX Collaboration

Noble gas detectors and CEvNS

In Dark Matter search experiments, the progress of setting limits has increased significantly when **liquid noble** gas detectors (two-phase) started operation

1st proposal (in 2004); LAr detector

C. Hagmann and A. Bernstein, **Two-Phase Emission Detector for Measuring Coherent Neutrino-Nucleus Scattering IEEE** Trans.Nucl.Sci. 51 (2004) 2151

RED-100

- Two-phase noble gas emission detector
- Contains ~200 kg of LXe (~ 100 kg in FV)
- 26 PMTs Hamamatsu R11410-20 (19 in top PMT array, 7 in bottom PMT array)
- Thermosyphonbased cooling system (LN₂) 24.08.2023

RED-100 at KNPP

KNPP – Kalinin Nuclear Power Plant

2020 RED-100 was shipped to KNPP

- 2021 Deployed and tested
- 2022 (Jan-Feb) Physical run

Akimov D. Y., et al. JINST 17.11 (2022), T11011

i Dream

RED-10

RED-100 at KNPP

- 19 m from the reactor core of 3000 MW thermal power unit 4
- Antineutrino flux at place $\sim 1.35^* 10^{13} \text{ cm}^{-2} \text{s}^{-1}$
- \sim 65 m.w.e. in vertical direction
- Passive shielding:
 - 5 cm Cu
 - $\sim 60 \text{ cm H}_2\text{O}$

- Blind analysis strategy
- Reactor ON data is closed until all the data analysis methods are ready
- Analysis is based on Reactor OFF data and calibration data

Data collection @ KNPP

Stability checks

- SE count rate
- Light yield (LY) response
- SE duration
- Background rates
- Other parameters

LY & duration of SE

Gamma calibrations

- Gamma calibrations each week
- LY stability check
- Light response functions (LRF)
 - Simultaneous reconstruction of position and energy of the event
 - See the talk of Olga Razuvaeva
- Electron extraction efficiency

Electrons extraction parameters

- The most significant influence on RED-100 response
- e⁻ extraction efficiency (absolute measurements based on NEST predicted charge yield)
- e⁻ lifetime before capture on electronegative impurities
 - compare with total drift time of ~265 μs
- Resulted in reduction of expected CEvNS spectrum to the lower number of electrons in the events
- We are expecting around 1 CEvNS event per day in the region of 5-6 electrons per event

Electron extraction efficiency

- Huge SE background
- To reduce this background a "smart" trigger was introduced
 - >2 SE within 2 µs (60 PE)
 - <50 PE in pretrace of 50 μs before trigger
- Only 30 μs windows with signals in S2-only mode are recorded
- Order of magnitude benefit for live time

Background stability in ROI (Reactor OFF data)

- Background in the region of 4 electrons per event is not very stable
- Backgrounds in the region 5-6 electrons can be considered as stable
- What are the sources of possible background variations with Reactor operation?

External background: gammas

- Nal[Tl] detector
- Count rate is in ~5 times larger than in laboratory due to thick concrete around
- Mainly the same spectrum structure
- No dependence on Reactor operation periods
- Diurnal ²²²Rn variations in water shielding are bellow (3.2 ± 0.3) Bq/L at 95% C.L.

External background: neutrons

- Bicron LS (BC501A) detector
- Pulse shape discrimination
- Spectrum was unfolded
- Neutrons flux upper limit (24.1 ± 1.2)*10⁻⁵ N/cm²/s
- No dependence on Reactor operation periods

- Muons background was measured with RED-100 itself
- No dependence on Reactor operation periods
- Count rate is reduced in 7-8 times in comparison with the Lab test
- But muons provide a huge energy deposition in the detector

Muons as a source of the SE background

- SE rate increasing after big energy deposition in liquid noble gas detector
- It was observed by several groups
- Very long component of several milliseconds

Also, observed in ZEPLIN-III: JHEP 1112 (2011) 115, <u>arXiv:1110.3056</u> [physics.ins-det]

Electron shutter

- To block signals induced by muons
- To minimize short component of SE background
- Still very high SE rate (250 kHz in the lab. test)
- Reduction by a factor of ~7-8 at KNPP

Main background in the ROI

- Main background → accidental coincidence of several spontaneous electrons
 - CEvNS events are **point-like** events
 - Background is mostly
 NOT point-like
- Light distribution across PMT array should by different

PMT array

Neural Networks for background rejection

- First idea of cut: the relation between amount of light collected by leading 3 neighboring PMTs to the total amount of light in event
- Classical ML approaches were tested with further improvement of the discrimination power
- Finally, deep learning techniques to mitigate this kind of background
- See the talk of Olga Razuvaeva

Current status and plans

- RED-100 was decommissioned and shipped back to MEPhI for the upgrade
- Data analysis is ongoing

Future of the RED-100

- The main idea is to substitute LXe with LAr
- Higher nuclear recoils energies → more electrons per CEvNS event
- Upgrade is ongoing:
 - Light readout system
 - TPB coating
 - Cooling system power increasing

- RED-100 was successfully deployed and ran at industrial NPP
- Data analysis is in progress
 - ML techniques are used for the specific background rejection
- First results of Reactor ON data analysis are expected soon
- Detector was shipped back, upgrade is ongoing
- RED-100 with LAr first tests in this year

Thank you for your attention!

Backup

CEvNS measurements

RED-100: schematic layout of grids and PMTs

Sizes of the drift volume and distances between grids are in mm.

T and B – top and bottom grounded grids,
A – anode grid,
G1 – electron shutter grid,
G2 – extraction grid,
C – cathode grid

RED-100 performance: LXe purity

- Electronegative impurities catch the ionization electrons
- Purification in two stages
 - 1st: spark discharge technique with "Mojdodyr"
 - 2nd: continues circulation of Xe through RED-100 and SAES
- Electron lifetime of several milliseconds was achieved

Xenon was contaminated by highly-electronegative impurities presumably due to the use of a special fluorine-containing highmolecular-weight lubricant in gas centrifuges.

After purification, the achieved lifetime \gtrsim 50 µs for ~200 kg of LXe

Generated electrons in RED-100

Short SEs

Rudik Dmitrii, The RED-100 experiment