Reconstructing Inelasticity in IceCube using Deep Neural Networks

Philip Weigel, MIT for the IceCube Collaboration [pweigel@mit.edu]

(08/22/2023) NPML 2023

Overview

- 1. The IceCube Neutrino Observatory
- 2. Neutrino Fluxes and Interactions
- 3. An Approach to Machine Learning in IceCube
- 4. Inelasticity Reconstruction

The IceCube Neutrino Observatory

- IceCube is a cubic kilometer of instrumented ice at the South Pole
- There are 5160 digital optical modules (DOMs) that detect Cherenkov light from charged particles passing through the ice
- For neutrino interactions, these are charged particles resulting from hadronic showers and outgoing charged leptons

IceCube Science

- The results from our analyses rely strongly on our ability to reconstruct neutrino energies, directions, and particle identification
 - In recent years, these reconstructions have improved greatly with the introduction of machine learning tools

Recent IceCube Result: Galactic Plane

- One of the biggest results from IceCube this year
 - Identification of neutrinos originating from Ο the galactic plane at 4.5**\sigma**
- Analysis relied on many DNN-based reconstructions and hybrid methods
 - See Mirco Huennefeld's talk from the 2020 \bigcirc NPML for a good overview
 - I will discuss some of these tools later Ο

Science RESEARCH ARTICLE NEUTRINO ASTROPHYSICS Observation of high-energy neutrinos from the Galactic

Current Issue First release papers

Archive About M

plane

ICECUBE COLLABORATION, R. ABBASI, M. ACKERMANN, J. ADAMS, J. A. AGUILAR, M. AHLERS, M. AHRENS, J. M. ALAMEDDINE, A. A. ALVES JR., [...] AND P. ZHELNI 380 authors Authors Info & Affiliation

· 29 Jun 2023 · Vol 380, Issue 6652 · pp. 1338-1343 · DOI: 10.1126/acience.adc981

Submit manuscrip

Atmospheric Muons

- Cosmic rays interact with the atmosphere, producing a large number of secondary particles
- Only muons and neutrinos are able to make to the detector below the ice
 - These atmospheric muons are a large background for many of the neutrino physics analyses
 - The detector triggers on atmospheric muons at a rate of about 3kHz (*Astropart. Phys. 78 (2016)*)
 - Example: neutrino rate in the 2020 sterile neutrino analysis: 1.3 mHz (*Phys. Rev. Lett. 125, 141801*)

Atmospheric Neutrino Flux

- Most neutrinos observed in IceCube come from the conventional atmospheric flux
- These neutrinos mostly originate from pion and kaon decay-in-flight
- Note the factor of E³!

Atmospheric Neutrino Flux

- The prompt atmospheric flux primarily comes from $D^{\pm/0}/D_s$ meson and Λ baryon decays
 - Simply called "prompt" based on the decay times of these particles
- The prompt component overtakes the conventional component at the highest energies

Astrophysical Neutrino Flux

- Above ~200 TeV, the diffuse astrophysical flux begins to dominate over the atmospheric flux
 - Diffuse meaning isotropic, neutrinos originating from high energy astrophysical events
 - Origins of these neutrinos are not completely known
- Point Sources:
 - TXS 0506+056
 - NGC 1068
- A fraction also originates from the galactic plane

Neutrino Deep Inelastic Scattering

- In neutrino deep inelastic scattering (DIS), a neutrino exchanges a W or a Z boson with a quark
 - \circ W boson (CC) \rightarrow Charged lepton + hadrons out
 - \circ Z boson (NC) \rightarrow Neutrino + hadrons out
- Inelasticity, labeled y, is the fraction of energy imparted into the hadrons:

$$y = \frac{E_{\text{had}}}{E_{\nu}}$$

Neutrino Deep Inelastic Scattering

• The cross section in terms of the structure functions is given by

$$\frac{d^2 \sigma^{\nu,\overline{\nu}}}{dx \, dy} = \frac{G_F^2 M E_{\nu}}{\pi \, (1 + Q^2/M_{W,Z}^2)^2} \left[\begin{array}{c} \frac{y^2}{2} 2x F_1(x,Q^2) + \left(1 - y - \frac{Mxy}{2E}\right) F_2(x,Q^2) \\ \pm y \left(1 - \frac{y}{2}\right) x F_3(x,Q^2) \end{array} \right]$$

- +y for neutrinos, -y for antineutrinos
- The structure functions depend on the parton distribution functions

$$F_2(x,Q^2) = 2 \sum_{i=u,d,\dots} (xq(x,Q^2) + x\overline{q}(x,Q^2))$$
$$xF_3(x,Q^2) = 2 \sum_{i=u,d,\dots} (xq(x,Q^2) - x\overline{q}(x,Q^2))$$

Neutrino Deep Inelastic Scattering

- An interesting feature of DIS is that neutrinos and antineutrinos have differently shaped distributions with respect to inelasticity
 - \circ \quad Note: y-axis of this plot is proportional to the cross section
- These cross sections are very well understood
 - Uncertainty of DIS cross sections ~several %
- This will come up again later!

•CDHS measured y distribution

Light Detection

- Charged particles in the ice can produce Cherenkov light
- The light propagates and scatters until hitting a DOM or absorbed
- At high energies, muons undergo stochastic losses and produce secondaries that radiate

The Dust Layer

- The ice below the South Pole is typically very transparent, allowing us to observe many of these events
 - However, scattering in the ice obscures the typical Cherenkov rings people would expect
- Additionally, about half-way down the detector, there is an additional layer of dust
 - A region of higher absorption and scattering

IceCube Events

- IceCube detects events with energies varying over several orders of magnitude
 - ~GeVs to ~10 PeV
- The shape and size of these events vary greatly
 - Only DeepCore can really resolve events < 100 GeV (top right)
- $v_e^{}$ CC, $v_{\tau}^{}$ CC, and NC interactions look spherical (showers/cascades)
- v_{μ} CC are extended (tracks)

Shaping IceCube Data

Complication of geometric information and dimensionality:

- Time-series data from DOMs
 - DOMs can have small or very large numbers of pulses
 - For use in a CNN, we need a fixed-length input for each dOM
- Spatial layout of the main array strings
 - Simply mapping the hexagonal geometry to a rectangular array throws away useful geometric information
- DeepCore strings
 - Do not follow the geometrical pattern of the main array strings
 - DeepCore contains a lower and an upper sub-array, which are separated by a layer of dust in the ice

PMT Pulses to Features

• Pulse data from PMTs are reduced with summary statistics

PMT Pulses to Features

- The DeepCore upper and lower arrays are separated out from the main array
- The IceCube main array is mapped to a zero-padded rectangular array
 - Geometry will be handled by modified convolutions

Hexagonal Convolutional Layers

- Hexagonal convolutions are used to leverage the near-symmetric properties of the IceCube detector
 - Reduces the geometric mismatch when embedding onto the square grid
- This is not an exact symmetry as the spacings between detector strings are not even
- There are several available tools for hexagonal convolutions:
 - hexaconv: <u>https://github.com/ehoogeboom/hexaconv</u>
 - TFScripts: <u>https://github.com/icecube/TFScripts</u> (used in this work)
 - HexCNN: <u>https://arxiv.org/abs/2101.10897</u>
 - hexagdly: <u>https://github.com/ai4iacts/hexagdly</u>

Example: Hexagdly Implementation

Example: TFScripts Implementation

shaped kernel can be defined by a tuple of size *s* and orientation o: (s, o). For an axis aligned hexagon (orientation o = 0), the size parameter s defines the number of points along an edge

JINST 16 (2021) P07041 See also: https://github.com/icecube/TFScripts

Neural Network Architecture

- Components of the detector are fed through different sequences of convolutional layers, later flattened and combined
- A sub-network is used to estimate the uncertainty on the prediction
 - A gradient stop is used so the uncertainty estimation does not backprop to the main network

See also: https://github.com/icecube/dnn_reco/

Event Topologies

- We are interested in CC muon (anti)neutrino interactions which produce an outgoing muon (a "track") and a hadronic shower
- There are two types of observed event topologies:

Starting Tracks

- Starting tracks have an interaction vertex inside of the detector volume
 - Most of the hadronic energy is deposited in the detector
- Even though the muon leaves the detector, its energy is proportional to its stochastic energy losses
 - The combination of the hadronic shower and the muon losses allow for a far more accurate reconstruction of the neutrino energy than that of through-going events

Starting

Training Monte Carlo Dataset

- Inelasticity can only be reconstructed if we have information about the hadronic shower at the interaction point
- To train this DNN, we use true starting track (v_{μ} CC) events
 - \circ These events are generated with energies of 100 GeV to 1 PeV with an E⁻² power law spectrum
 - Only simple filtering and precuts are applied to this dataset
- Through-going tracks and other flavor events are not considered in the training
 - Other reconstructions and filters are used to significantly reduce these rates to negligible levels

Reconstructing Inelasticity

Approach:

- Reconstruct the energy deposited by the hadronic shower and outgoing muon separately
- Divide the hadronic energy by muon+hadronic to obtain the inelasticity

Complication:

• Hadronic shower energy is tricky-not all of it will be visible in the detector

Visible Energy

- A new variable is introduced: visible energy, which equates to an equivalent energy of a purely electromagnetic shower
- This can be calculated by multiplying the total hadronic shower energy by an energy-dependent scaling term determined by simulation:

$$E_{\text{had}}^{\text{vis}} = F_{\text{EM}}(E_{\text{had}})E_{\text{had}}$$

- For a muon, the visible energy is its kinetic energy when it enters the detector
 - Alternatively, its energy when it is created from the interaction if the vertex is within the detector

Defining Visible Inelasticity

- The visible inelasticity will be defined by using the visible hadronic energy and visible muon energy
 - This proxy for inelasticity is more correlated with the photons observed in the detector

$$y = \frac{E_{\text{had}}}{E_{\nu}} = \frac{E_{\text{had}}}{E_{\mu} + E_{\text{had}}} \longrightarrow y_{\text{vis}} = \frac{E_{\text{had}}^{\text{vis}}}{E_{\mu}^{\text{vis}} + E_{\text{had}}^{\text{vis}}}$$

Training Information

- Train on 3M simulated true starting track events that pass basic quality cuts
 - Labels: visible track energy, visible hadronic energy, total visible energy
- Adam optimizer, ~2M steps w/ learning rate scheduler
 - 1e-5 to 1e-3 for 1k steps
 - 1e-3 to 1e-3 for 1M steps
 - 1e-3 to 1e-7 for 1M steps
- Loss function: Gaussian Likelihood
 - Very similar to MSE, but the estimated error from the sub-network is an input to the loss function s.t. the lower the uncertainty the lower the loss
- Total number of parameters: ~1M

Final Level Dataset

This work uses an event selection designed for an ultra-high purity (>99.9%) muon neutrino dataset, so the performance of this reconstruction will be shown with the following filters/cuts:

- Events are generated from 100 GeV to 1 PeV with muon neutrinos/antineutrinos
- Precuts are applied to reduce the overall data rate and remove poor quality events
- Events above the horizon are cut to reduce cosmic ray muon background
- Two DNN reconstructions are applied: energy estimator and topology classifier
 - Only classified starting tracks with a reconstructed energy of 500 GeV to 100 TeV pass
- A final level BDT is applied to further reduce background events

Reconstructing Hadronic Energy

- For a starting track event, the neutrino interaction vertex is inside of the convex hull of the detector, allowing for an accurate reconstruction of the hadronic energy
- Columns are normalized to 1
 - Essentially a pdf in each column

Notes:

- There is a bias toward predicting a lower hadronic energy, likely due the higher statistics at low energies in the training sample
- 2. The higher energy region is sparse from the low MC statistics

Reconstructing Track Energy

• High energy muons leave the detector with most of their energy, making it harder to resolve their energy

Notes:

1. Again, the higher energy region is sparse from the low MC statistics

Reconstructing Visible Inelasticity

• The visible inelasticity can be calculated using the equation from before:

 $y_{\rm vis} = \frac{E_{\rm had}^{\rm vis}}{E_{\mu}^{\rm vis} + E_{\rm had}^{\rm vis}}$

 Despite poor muon energy resolution, the ability to reconstruct the visible inelasticity is quite good

Number of Events

- Here is the same plot as the previous slide, but showing the expected number of events in 10 years
- There is a noticeable deficit at high visible inelasticity
 - This is caused by the shape of the DIS cross section as well as the precuts that try to remove events that don't look track-like

What can we do with inelasticity?

- In general, the visible inelasticity is sensitive to any interaction that looks more shower-like than track-like
 - Tau decays that produce final-state muons will look more shower-like
- Also sensitive to the production of heavy quarks in the hadronic showers
 - \circ Primarily charm production \rightarrow produces a flatter y distribution

Philip Weigel / IceCube Inelasticity Reconstruction / NPML 2023

What can we do with inelasticity?

- As mentioned earlier, the cross section as a function of inelasticity differs between neutrinos and antineutrinos
 - This can be used for the statistical separation of nu and nubar
- One such application is to improve predictions on the atmospheric nu/nubar ratio
 - This can improve searches for signals that differ w.r.t. neutrinos and antineutrinos
 - e.g. sterile neutrino oscillations with matter effects

Conclusions

- We have shown that deep neural networks can be effective at reconstructing the visible inelasticity of neutrino deep inelastic scattering events in IceCube
 - This method relies on separating the outgoing muon energy and the hadronic shower energy
- Improvements with regard to network architectures, hyperparameters, etc. are currently being investigated

Thank you for listening!