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Introduction
An Ideal Sterile Neutrino Search

® v

electron
neutrino

Consider the two-neutrino oscillation probability model
P =1 —sin? 20 sin?[1.27 Am? (L/E)]
« Disappearance/appearance probability is maximized when 1.27 Am? (L/E) ~ /2, or when Am? ~ E /L

» Electron antineutrino anomalies (both excesses and deficits) have been observed at neutrino experiments
worldwide, and are thought to be signatures of oscillations of neutrinos into sterile neutrinos

« These anomalies tend to concentrate around the oscillation region of Am2~0(1 eV?)

* Ina perfectworld.
» Neutrino source has a well-understood production energy and flux
* Large-volume detector with impressive sensitivity to neutrino interactions in the scintillation volume
« E/L~ 0O(1eV?)to give best chance of seeing neutrinos oscillating into a sterile state

« High enough neutrino flux to achieve statistics at the 5¢ level
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Introduction
An Ideal Sterile Neutrino Search

* Ina perfect world. . we have IsoDAR
« Neutrino source has a well-understood production energy and flux
The isotropic beta decay of °Li, where v, have an average energy of 6.4 MeV.
* Large-volume detector with impressive sensitivity to neutrino interactions in
the scmﬂ\laﬂon volume
An underground liquid scintillator that can detect IBD interactions peaking at
an antineutrino energy of 9 MelV/

. E/L ~ 0(1 eV?) to give best chance of seeing neutrinos oscillating into a
sterile state

An antineutrino detector with a diameter ~O(10 m)
* High enough neutrino ﬂux to achieve statistics at the 50 level

Constantly produce ¢ SLj by bombarding ’Li with neutrons, which we can
produce by radiating “Be with 10 mA o/ 60 MeV protons
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The IsoDAR Experiment

Overview

* Installation planned at Yemilab beside a kiloton-
scale liquid scintillator
* IsoDAR is a proposed v, source in which:

1. H, plasma is created in the ion source

2. Beam is pre-accelerated, focused, and bunched in the
radiofrequency quadrupole (RFQ)

3. 5 mA beam is injected into cyclotron & accel to 60 MeV

4. Electrons are dissociated from H,*, resulting 10 mA of 60
MeV protons irradiate target producing v,

 IsoDAR's high v, production rate paves the way for
state-of-the-art sensitivities to sterile neutrino
searches and exotic neutrino property studies.

(Figure not to scale)
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The IsoDAR Experiment

lon Source

« Currently under commission at MIT's Plasma
Science and Fusion Center

« Direct axial injection into the cyclotron require the
0N source to have:
e Low beam emittance

* Minimally contaminated beam of H,*
* High current (10 mA)

« Uses a multicusp ion source, with modifications,
developed at LBNL

« Demonstrated this technology’s feasibility by
reaching an unprecedented 1 mA beam, low
emittance (<0.05 T-mm-mrad, RMS, normalized),
and high purity (80% H,*)
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The IsoDAR Experiment
Pre-injection RFQ

« Currently being built at BEVATECH GmbH in
Frankfurt, Germany

« Beam injection into cyclotrons generally difficult:
has been shown that beam acceptances

10000

oreviously cap at 20% ﬁf ]
« RFQs are especially useful for focusing, bunching, § wo—
and even accelerating beams of low energy with b
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Figure 3: Phase Spaces of the RFQ output beam.
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The IsoDAR Experiment

Injection and Cyclotron

* Beamis injected axially into cyclotron
through a spiral inflector, where most of
beam loss is expected to occur (~50%)

* [soDAR cyclotron beam energy

on-par to cyclotrons used for -
medical isotope production, but
IsoDAR has much higher beam
Intensity T
£ € £
« High beam current poses space i — 3 | == 7|
charge as a threat to clean extraction, 2 : | == | &
but IsoDAR's cyclotron is designed to i T o R L
13 ke ad\/a ﬂtage Q}( vortex motion to e I;L(;Itud(:nal (1n?m) - . I;:;itud(:nal (L:)m) & = I;L%itud(:nal(:;)m) -
allow for cleaner beam extraction T e T
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The IsoDAR Experiment

Relevance Beyond Sterile Neutrino Searches

* [soDAR's nominal energy and neutrino intensity also
optimal for exotic neutrino-decay searches

« Can provide newfound sensitivity to
ALP searches when considering ALP . @

E137

couplings to nuclear de-excitation t - S N a
p 9 m:\\\ £
ohotons BN

« The development of cyclotrons in sl A y

general can help to provide cost-

effective particle physics experiments N9~ i \ S

at universities and research centers \ B

Iso0DAR (5 Years)

— 10

worldwide

« Technology can be modified to significantly enhance
med|ca‘ ‘SOtQpe perUCt|Oﬂ FIG. 4. Sensitivity contours at 90% CL, for 5 and 10 year exposures, using (a) couplings to photons, (b) couplings to

electrons, (c) couplings to nucleons and photons, and (d) couplings to nucleons and electrons. In (c) and (d), ALPs
are produced via nuclear transitions and propagate to the detector to subsequently scatter or decay via electron
coupling (inverse Compton, a — e*e™ decay) or photon coupling (inverse Primakoff, a — vy decay) channels.
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Radiofrequency
Quadrupoles

« RFQOs are linear accelerators in which four
vanes (rods) apply oscillating EM fields,
focusing throughgoing beam alternatingly in
two transverse directions

« RFQOs are necessitated by IsoDAR's physical
space constraints and record-breaking beam
current

* Pre-acceleration before cyclotron injection
» Early separation of p* and H,*
* Focuses and bunches beam

e Simulation of RFQs (PARMTEOM, RFQGen)
computationally costly

» Exacerbated by IsoDAR's high beam current
due to nonlinear space charge effects
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(Left) Instantaneous transverse electric field in an
RFQ cell. (Right) Resultant longitudinal electric
fields which create a net acceleration on one or
many throughgoing charged particle. [2]



To an RFQ Surrogate Model

Uncertainty quantification

Predicted beam summary statistics can be
used for global sensitivity analyses

Real-time feedback and commissioning

Rapid simulation of throughgoing beams is
useful real-time information during tuning

Design optimization

surrogate models

Faster simulation reduces optimization

convergence time
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Can solve inverse problem for efficient initial

guess of optimal design
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« Surrogate models can serve as effective
substitutes for computationally costly particle-
in-cell simulations

» Fully connected deep neural networks (NNs)
are well-suited to predicting beam output
summary statistics (transmission, output
energy, emittance) given RFQ design inputs

" . Training of Neural
Input Beam Simulation Network (NN) or
Beam dynamics results Polynomial Chaos
Parameter simulation (objectives: OBIJs) Expansion (PCE)
4 P = N p B D prr—
PARMTEQM ' Transmission | — ‘
a — | Sample Surrogate .
mm) RFQGen W) | Eiongitudinal | - Optimizer
B £ & — | dataset model
WARP Dy —
: 4 \ A \ o y \ ) \
— - — design ~———~ - e
variations
Design ( ) Validation of optimizer solution from
variables ‘ Input Beam data the SM in simulation software
(DVARs) N / DVARs

The use of a surrogate model for an RFQ design optimization
scheme
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* 14 design variables (DVARs) Parametrization of defining RFQ design characteristics used to build DVARs

» Extended with one feature corresponding
to oddness/evenness of RFQ cells

DVAR definitions: OBJ definitions:
* bo0bjectivevariables (OBJs)  mommmmmmmemmmmmes 0 e
DVAR1: Bmax [ 8.5, 12.0 ] OBJ1: transmission [%]
. . . DVAR2: mX1 [ 5, 140 ] OBJ2: output energy [MeV]
o Code written in Julia DVAR3: mx2 [ 15, 160 ] 0BJ3: RFQ length [cm]
gziigz mi; { 1'822' 1'25]] OBJ4: longitudinal emittance [MeV*deg]
. ¢ m . 1oL OBJ5: x-emittance [cm*mrad]
« Correlations between DVARs removed DVAR6: mtaul [ 1, 500 ] OBJ6: y-emittance [cm*mrad]
DVAR7: mtau2 [ 1, 500 ]
S DVAR8: PhiYl [ -89.95, -30 ]
* Initial NN hyperparameter scan expands DVAR9: Phivz [ -87.45, -25 ]
. ' . DVAR10: Phitaul [ 1, 500 ]
imits explored previously PvARLL: pnitoey L1l o00 ) e max I°
. DVAR12: my3ref [ 1.105, 2.0 ] m ~
» Make appropriate cuts on data to DVARL3: Phi¥3ref [ -84.95, -20 ] . i
T . o DVAR14: Eref [ 0.055, 0.075 ] mv2 ] myv2
eliminate nonphysical results (transmission) it it
mtau?2 mtau2
. . . . . ) PhiY1 PhiY1 4 r 0.00
* Design optimization leverages best- (Right) Correlation e ]
performing NN as surrogate model in matrices before and after o sz,
Bayeg|an acqu|5|t|om ](u HCUOD D\/AR tranSfOrmaUOﬂS PhiYZre:: PhiYZre::

Eref
Eref

I_o.75
-1.00

Bmax -
Phitau2 -
mY3ref
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Training set Test set
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=2 I.* 0.10 -
Methods
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* Emittance is the area that a beam occupies in phase s oot 0w oo om oor ow o5 wos om
x-emittance (OBJ5) x-emittance (OBJ5)
space
Figure 5. Joint distributions of true x and y emittances (0BJ5 and 0BJ6, respectively)
. . . for sample training and test sets. From the inherent x, y symmetry of RFQs, we expect
* Beams with small emittances have particles approximate symmetry about the 45° line.
confined to a small location having almost the same Training set predictions Test set predictions
' . A2
Mmomentum oo oos | T
12000 1 . 5 008 .’
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dataset havi ng an 4000 Figure 6. Joint distributions of predicted x and y emittances (0BJ5 and 0BJS6,
odd number of respectively) for sample training and test sets. Evident in these plots is the fact that
cells and an even 2000 - the “double band” structure discussed in Fig. 5 is not recovered. We discuss in Sec. 2.8
that this effect is not due to training convergence to a local minimum in the output
number of cells oLl : . : . . . space, but an intrinsic characteristic of the dataset.
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Results
Architecture Hyperparameter Grid Searches

0.60
0.551
B oso « All neural networks were trained to minimize MSE, had the
Ezﬁf{ same batch size of 1024, used sigmoid activations, and an
gzzz ADAM optimizer with a constant learning rate of 1%
5 0:25
* 0.20 Depth
= 500 1000 1500 2000 2500 Depth 4 Depth 5 Depth 6
kpahs Width 50 0.9884 + 0.000311 0.9887 &+ 0.000217  0.9893 + 0.000127
Width 75 0.9900 + 0.000169  0.9904.4£0.0000864  0.9907 + 0.000145
o ) Width 100 | 0.9905 + 0.0000763% 0.9908 + 0.0000698 < 0.9908 + 0.00017
£ 050 3 75
ég:; g “’0;;1 Depth 4 Depth 5 Depth 6
Bossl N Depth Width 50 0.9901 =+ 0.0002 0.9902 + 0.000174 0.9905 =+ 0.00026
030 Width 75 0.9912 4+ 0.000129  0.9915 + 0.000178  0,9918 4.0 000217
3 02 Width 100 | 0.9918  0.0000719  0.9917 4 0.0001523 0.9920 % 0.0000623 "3
s 500 1000 1500 2000 2500 Table 3. Aggregated validation-set R? scores for each set of hyperparameters (Tab. 2),
Epochs

for NNs trained on the complete dataset (top) and samples having transmission
> 60% (bottom). Each R? score is computed across all objective variables, but is
not representative of the prediction accuracy of individual objectives; MAPEs for each
objective for each NN architecture are shown in/Appendix C.

Figure 6. Training set loss curves (mean squared error) for scanned neural network
architectures (Tab.[2), trained on the complete dataset (top) and samples having beam
transmission > 60% (bottom). The solid line in the center of each curve represents the
cross-fold loss mean, and one standard deviation is shaded above and below.
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Results
NN Performance

Label  Objective Variable = RFQNetl [ RFQNet2] Ref. [17]
0BJ1  Transmission [%] 1.5% 0.97% 2.4%
0BJ2  E.. [MeV] 1.8% 1.8% 1.9%
0BJ3  RFQ length [cm] 1.3% 1.3% 2.0%
0BJ4  €long. [MeV-deg] 6.9% 5.8% 8.2%
0BJ5 ¢, [cm-mrad] 4.8% 4.1% 12.8%
0BJ6 ¢, [cm-mrad] 4.8% 4.0% 12.5%

Test-set mean absolute percent errors on top-performing NN predictions for each of the
6 objectives studied. Compared to previously best-performing surrogate model.

Batch Size

Uses 15th feature variable: odd/even
number of RFQ cells

Data restricted to have transmission of at
least 60%

"DAESALUS
: IsoDAR

RFONetl RFQNet? Previous

1024 1024 256
X
X X
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 Larger batch size alone was
responsible for most of the

reductions in transmission and
longitudinal emittance predictions

« K-S tests between training-set and
test-set errors indicate significant
statistical differences in the
distributions of residuals for certain
objectives, hinting at overfitting

» Dropout regularization seemed to

have inconsistent effects on the
oredictive performance of each of the

6 objectives studied
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« Given some complex function f, we can algorithmically find
an optimum by way of Bayesian Optimization

w

Score (Model Performance)

« We can fit a Gaussian Process to f to build an acquisition
function which helps us to determine which point in the input

data to test for optimality next

* lteratively, we choose a potential optimum, update our
Gaussian process with an evaluation of f, and choose the next
optimum in the set

* Finding optima if f is multidimensional means computing a
Fareto front in which we can evaluate tradeoffs between the
responses

« We employ Julia's surrogates. jl package to optimize the :Fons
design of IsoDAR's RFQ using RFQNet?

Trees in Forest (K)
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Results
Design Optimization

o o
S o

Scaled energy
o

squared error

0.0

o« RFQONet? (incl. transmission cuts,
15t feature variable) as
acquisition function in Bayesian
optimization of RFQ design,
relevant to [soDAR's
specifications:

RFQ length [cm]
5

0.125
0.100
0.075
0.050
0.025

L

Longitudinal emit.
[MeV deg]

max transmission
min (energy — 70 KeV)A2
. min RFQ length
min longitudinal emittance
min transverse emittances

x-emit. [cm mrad]
o
&

« Optimum identified as having
> 95% transmission, €ong <
0.04 MeV °, and €, €, <

y-emit. [cm mrad]
o
&

0.02 - skl i\
100 9 80 70 60 50 00 02 04 06 60 90 120 150 180 0.0250.0500.0750.1000.125  0.02 0.03 0.04 0.05 0.06 004 cm mrad
Transmission [%] Scaled energy RFQ length [cm] Longitudinal emit. x-emit. [cm mrad]
squared error [MeV deg]
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Conclusions Future Work

* Julia is a programming language  « More sophisticated NNs may

well-equipped to handle the continue to improve predictive
computational rigors of

accuracy
surrogate model engineering

« Additional regularization strategies
 Careful data selection criteria « Residual NNs, convolutional NNs

Sigmﬁcaﬂﬂy imp@\/@d NN « Step through RFQ one cell at a

predictive accuracy time to build final beam quality

oredictions

Coming to a journal near you. ..
(2210.114571)
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