Conveners
Tracking: Tracking - 1
- Lorenzo Rota (SLAC)
Tracking: Tracking - 2
- Ariel Schwartzman (SLAC)
Tracking: Tracking - 3
- Matteo Porro (European XFEL GmbH)
Tracking: Tracking - 4
- Richard Sandberg (Brigham Young University)
In this contribution, I will review the performance improvements that two design innovations, low-gain (LGAD) and resistive read-out (RSD), have brought to silicon sensors. Large signals lead to improved temporal precision, while charge sharing has removed the need for very small pixels to achieve excellent spatial precision. LGAD- and RSD- based silicon sensors are now adopted, or...
The proposed Electron-Ion Collider (EIC) will operate high-luminosity high-energy electron+proton and electron+nucleus collisions at the collision energies from 20 to 141 GeV to solve several fundamental questions in the high energy and nuclear physics fields. Its instant luminosity can reach $10^{33-34} cm^{-2} s^{-1}$ and the bunching crossing rate is around 10 ns. The EIC project has...
In the last few years, Low Gain Avalanche diodes (LGAD) obtained growing attention as radiation sensors due to some important advantages: larger internal signal, potentially higher signal-to-noise ratio, better time resolution, and higher radiation hardness with respect to standard p-i-n sensors. They are currently considered state-of-the-art silicon detectors for timing application in HEP...
Low Gain Avalanche Detectors (LGADs) are thin silicon detectors capable of providing measurements of minimum-ionizing particles with time resolution as good as 17 ps. These properties make LGADs the prime candidate technology for achieving 4D tracking in future experiments. Furthermore the fast rise time and short full charge collection time (as low as 1 ns) of LGADs are suitable for high...
The increase of the particle flux (pile-up) at the HL-LHC with instantaneous luminosities up to L ≃ 7.5 × 10$^{34}$ cm$^{−2}$s$^{−1}$ will have a severe impact on the ATLAS detector reconstruction and trigger performance. The end-cap and forward region where the liquid Argon calorimeter has coarser granularity and the inner tracker has poorer momentum resolution will be particularly affected....
The MONOLITH ERC Advanced project aims at producing a monolithic silicon pixel ASIC with picosecond-level time stamping by using fast SiGe BiCMOS electronics and a novel sensor concept, the Picosecond Avalanche Detector (PicoAD).
The PicoAD uses a multi-PN junction to engineer the electric field and produce a continuous gain layer deep in the sensor volume, generating a thin absorption layer...
We update our sub-picosecond timing studies[1,2], which used a straw-man pixel detector (TIMEMPIX) in which timing information was used to substitute for micron spatial resolution, significantly reducing channel count and data volume. That study considered the 130nm CMOS technology node and we update and contrast the performance and power parameters in the 65nm CMOS technology...
Major advances in silicon pixel detectors, with outstanding timing performance, have recently attracted significant attention in the community. In this work, we present and discuss the use of state-of-the-art Geiger-mode APDs, also known as single-photon avalanche diodes (SPADs), for the detection of minimum ionizing particles (MIPs) and optical photons with best-in-class timing resolution....
The Timepix hybrid pixel detector readout chips aim at particle detection and imaging with on-pixel time tagging. Timepix4 is the most recent member of the Timepix family. It can be connected to a sensor with a matrix of 448 x 512 square pixels with a pitch of 55um. Hits are time tagged to within a bin of 200ps. The chip can handle a maximum incoming flux of hits of 3.6 MHz/mm2/s in...
The Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC) is undergoing an extensive Phase 2 upgrade program to prepare for the challenging conditions of the High-Luminosity LHC (HL-LHC). A new timing detector in CMS will measure minimum ionizing particles (MIPs) with a time resolution of ~30-40 ps for MIP signals at a rate of 2.5 Mhit/s per channel at the beginning of...
Monolithic active pixel sensors (MAPS) have recently been used as building blocks of charged particles tracking and vertexing detectors because they offer lower material budget, higher granularity as well as a simpler assembly procedure and lower cost compared to the traditional wide spread hybrid technology.
The interest towards monolithic silicon sensors offering both excellent timing...
This work presents results on the Analog Pixel Test Structure (APTS), a 4 x 4 pixel matrix prototype equipped with fast individual OPAMP-based buffering of analog pixel signals to output pads for exploration of pixel timing performance. The work was framed in the ALICE ITS3 upgrade and the CERN-EP R&D on monolithic sensors to explore the TPSCo 65-nm imaging technology. This upgrade will...
Within the ATTRACT FASTPIX project, a monolithic pixel sensor demonstrator chip has been developed in a modified 180 nm CMOS imaging process technology, targeting sub-nanosecond timing precision for single ionising particles. It features a small collection electrode design on a 25-micron-thick epitaxial layer and contains 32 mini matrices of 68 hexagonal pixels each, with pixel pitches ranging...
Silicon sensors for the future generation of collider physics experiments will require high performances on spatial ($<$ 10 $\mu$m) and time resolution (20-50 ps) with a radiation tolerance up to fluences of $10^{17}$n$_{eq}$. To meet these challenges, a new silicon sensor architecture has been proposed, enabling internal gain without relying on doping, the Silicon Electron Multiplier (SiEM)....
Small-angle x-ray scattering (SAXS) has been widely used to probe the intricate structure of biomolecules and proteins. Owing to its conceptual simplicity, the technique has also been applied to study the cluster formation in nanoparticles and supercritical fluids (SCF). However, due to the complex thermodynamic state space often encountered in SCF, the effective exploration and identification...
Future collider experiments operating at very high instantaneous luminosity will greatly benefit in using detectors with excellent time resolution to facilitate event reconstruction. For the LHCb Upgrade2, when the experiment will operate at 1.5x1034/cm/s, 2000 tracks from 40 pp interactions will cross the vertex detector (VELO) at each bunch crossing. To properly reconstruct primary vertices...
Vertex detectors being conceived for the next generation of collider experiments will have to operate with an increased number of tracks per event. To cope with this problem, it will be mandatory to operate with pixel sensors and electronics having both high space and time resolutions (tens of µm and tens of ps respectively). Furthermore, high radiation resistance is necessary both for the...