The Silicon Electron Multiplier

16 Mar 2023, 14:25
20m
Bldg 53 / Room 1320 - Panofsky Auditorium (SLAC)

Bldg 53 / Room 1320 - Panofsky Auditorium

SLAC

2575 Sand Hill Rd Menlo Park, CA USA
Oral Tracking Tracking

Speaker

Marius Halvorsen (CERN)

Description

Silicon sensors for the future generation of collider physics experiments will require high performances on spatial ($<$ 10 $\mu$m) and time resolution (20-50 ps) with a radiation tolerance up to fluences of $10^{17}$n$_{eq}$. To meet these challenges, a new silicon sensor architecture has been proposed, enabling internal gain without relying on doping, the Silicon Electron Multiplier (SiEM). The SiEM incorporates a set of metallic electrodes within the silicon substrate which are used to create a high electric field region that provides charge multiplication. Simulations of SiEM configurations with TCAD and Garfield++ show a promising performance with a gain exceeding 10. Metal assisted chemical etching is a process shown to be compatible with the desired geometry, and is used to make a demonstrator. Results from a production comprising pillars with a radius of 500nm and a height of up to 8 ${\mu}$m on a hexagonal grid with a 1.5$\mu$m pitch will be presented along with key results from the simulations.

Primary author

Co-authors

Victor Coco (CERN) Lucia Romano (ETH Zürich, Paul Scherrer Institute) Evangelos Leonidas Gkougkousis (CERN)

Presentation materials