Conveners
Imaging: Imaging - 1
- Dionisio Doering (SLAC)
Imaging: Imaging - 2
- Christopher Kenney (SLAC)
Imaging: Imaging - 3
- Rafael Ballabriga (CERN)
Imaging: Imaging - 4
- Farah Fahim (Fermilab)
LCLS II HE will deliver x-ray pulses at a rate approaching a megahertz and will be the brightest x-ray source ever. A program is underway to develop detectors that can record images as fast as the accelerator generates them. An incremental approach is being pursued with multiple systems intended to cover the science relevant portions of the performance parameter space in metrics such as...
The ESRF Extremely Brilliant Source (EBS) is the world's first fourth generation
synchrotron radiation source. Latest generation x-ray sources like the EBS impose increasing demands on sensors and readout electronics. Apart from fast signal processing and high spatial resolution, detectors used at such facilities have to handle a broad dynamic range with fluxes of up to billions of photons...
The DynamiX project is the development of a 2D pixelated hybrid X-ray detector suitable for the next generation of high-flux synchrotrons such as Diamond II in the UK.
DynamiX incorporates a CdZnTe sensor at a 100µm pitch in a 192x192 array with a 65nm CMOS ASIC operating at 533KHz framerate (one frame per turn of Diamond II) with single photon resolution at 25 keV, 3×10^9 photons/s/pixel....
We report on the characterization, application, and future of the four-frame Icarus detector at LCLS. The free electron laser is able to produce intense single femtosecond pulses over a wide range of x-ray energies at 120 Hz (soon to be 10s of kHz) but can also make short trains of pulses down to 350 ps separation. This mode gives us access to a variety of interesting science on these...
The quality of dynamic, nanosecond-scale imaging of micro-voids in ablator materials subjected to laser-driven shock compression is currently limited by low temporal resolution, which is crucial in determining factors that prevent ignition in inertial confinement fusion (ICF) experiments. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we...
X-ray photon sources continue their exponential improvement in source brilliance.
X-ray Free-Electron Lasers (FELs) have revolutionized the field of X-ray photon science. For instance, with their intense and ultra-short X-ray pulses, they opened up the field of time-resolved experiments down to the femtosecond. Another area is the study of materials under extreme conditions. So far, FELs...
The DSSC camera was developed for photon science applications in the energy range 0.25-6 keV at the European XFEL in Germany. The first 1-Megapixel DSSC camera is available and is successfully used for scientific experiments at the “Spectroscopy and Coherent Scattering” and the “Small Quantum System” instruments. The detector is currently the fastest existing 2D camera for soft X-rays.
The...
Nanosecond scale, burst mode hCMOS imagers developed at Sandia National Laboratories (SNL) have provided revolutionary insight and data to a limited few research facilities. As these High Energy Density Physics research facilities typically operate on a shot-per-hour to shot-per-day timescale, little effort has been devoted to fast replication-rate circuitry for hCMOS image sensors. Advanced...
High-Z compound semiconductors aim to replace silicon as sensor material for X-ray energies above 15 keV thanks to their superior absorption efficiency. However, compared to silicon, high-Z sensors still lack in several aspects such as homogeneity, charge transport properties, charge trapping (leading to polarization and afterglow effects), long ranged fluorescence photons, and others.
The...
Recent developments in the accelerator technologies for large storage rings and novel X-ray optics enabled the delivery of 100-1000 times brighter X-rays onto the sample. X-ray imaging detectors are required to improve their performance to take the potential of these new sources fully. At the SPring-8 facility, we started the development of the X-ray imaging detector CITIUS for such purposes....
As the repetition rate of LCLS-II increases up to 1 MHz, novel detectors are needed to match the repetition rate of the machine. SLAC is developing several detectors belonging to the SparkPix family. Each detector is tailored to the specific requirements of each experiments and dedicated information extraction engines are implemented in each SparkPix ASICs to overcome the data challenge and...
A high degree of segmentation in pixel detectors is needed for recording trajectories of charged particles or impacts of X-ray photons with high spatial resolution. The desired granularity imposes severe constraints for the in-pixel processing circuits, signal readout, and power budget. Therefore, most of nowadays high-spatial resolution pixel detectors are limited to detection of deposited...
The HEXITEC$_{MHz}$ detector system is the latest generation of the STFC’s HEXITEC spectroscopic X-ray imaging detector systems. When coupled to Cd(Zn)Te sensor material the original HEXITEC system was capable of delivering high resolution X-ray spectroscopy (50 electrons RMS) per 250 $\mu$m pitch pixel for hard X-rays with energies 2 - 200 keV. The major limitation of this technology is that...
FELs deliver rapid pulses on the femtosecond scale, and high peak intensities that fluctuate strongly on a pulse-to-pulse basis. The fast drift velocity and high radiation tolerance properties of chemical vapor deposition (CVD) diamonds make these crystals a good candidate material for developing a high frame rate pass-through diagnostic for the next generation of XFELs. We report on two...
We describe the design and measurement results of the “UDC” - Ultrafast Pixel Array Camera Digitizer Chip. UDC is a 16-channel waveform digitizing microchip with large buffer length (4096 samples per channel) and high timing performance (10Gsps sampling, <10ps resolution), suitable for applications such as High-Energy Density Plasma Diagnostics. It is designed to work with a variety of fast...
The temporal resolution limit of silicon image sensors is 11.1 ps as we proved. We defined the super temporal resolution (STR) as the resolution less than this limit, since most image sensors are silicon-based [1]. To achieve the STR, mixing effects along the travel route of signal electrons in a pixel, elongating the temporal resolution, are separately analyzed and the countermeasures are...
We developed an x-ray optics solution, called x-ray tomographic-delay-line (XTEL), for studying pico- to nanosecond dynamics of mesoscale materials processes at existing x-ray light sources. This optic lays the groundwork for taking snapshot movies of materials processes with selectable delay times, as well as single-pulse 3D images of materials by recording multiple views simultaneously from...
Single-photon avalanche diodes (SPADs), also known as Geiger-mode APDs, have emerged as the detctor of choice in many photon-counting and high-performance imaging applications. Recently, CMOS-compatible SPADs and SPAD image sensors have reached unprecedented counting-rate (> 1Gcps) and timing-resolution (< 7.5ps FWHM) capability, while demonstrating high sensitivity to photons in the 400-nm to...
Many applications can benefit from detectors which have the ability of detecting low light intensities with precise timing. Some examples are Time of Flight Positron Emission Tomography (ToF-PET), High Energy Physics experiments (e.g. RICH detectors), Fluorescence Lifetime Imaging Microscopy (FLIM), Light Detection and Ranging (LIDAR) or Quantum Communications.
The FastIC Application...