Large detectors employing xenon are a leading technology in existing and planned searches for new physics, including searches for neutrinoless double beta decay (0νββ) and dark matter. While upcoming detectors will employ target masses of a ton or more, further extending gas- or liquid-phase Xe detectors to the ktonne scale would enable extremely sensitive next-generation searches for rare...
With ever larger detectors and the self-shielding properties of liquid xenon, the intrinsic purity of liquid xenon detectors is becoming increasingly important for rare event searches such as double neutrinoless double beta decay or dark matter. In this context, the isotope Rn-222 and its decay progenies are of particular importance.
The selection of low-activity materials and surface...
As co-spokesperson of the XENON collaboration I coordinated and purchased tons of xenon from various vendors. I noticed the talk by an Air Liquide representative, but I could add a significantly wider picture and broader insights into the global xenon market, about various market interdependencies, price evolution and many other details.
The natural gas industry has technologies for large-scale cryogenic gas storage on the surface (well-known to physicists since its adoption by DUNE). Less well known are the technologies for large-scale ambient-temperature underground gas storage. In this talk I will try to convince you that, with the right underground infrastructure, gas TPCs (a) can be scaled up as easily as cryogenic...
Next-generation large liquid argon time-projection chambers offer an unprecedented amount of active detector mass in a deep location. Modifications to the detector design could enable neutrinoless double beta decay searches, with the possibility of reaching the normal ordering region. These modifications include adding external neutron moderation, filling the detector with argon depleted in...
The isotope
matrix element calculations in the proton-rich region of the nuclear chart [C. Wittweg, B. Lenardo, A. Fieguth and C. Weinheimer, EPJ C...
Detection of neutrinoless double-beta decay (
The KamLAND-Zen experiment started a search for
The dual-phase xenon time-projection chamber (TPC) has risen in recent decades as one of the best technologies to hunt for dark matter in the form of weakly interacting massive particles (WIMPs). This xenon TPC has many advantages, including self-shielding against backgrounds, low threshold, good energy resolution, potential scalability for future larger detectors which could probe the WIMP...
Neutrinoless double beta decay (NLDBD) is the most sensitive probe of lepton number violation. Its discovery would be a clear signal of physics beyond the Standard Model, confirm the Majorana nature of neutrinos, and provide insight into scenarios of baryogenesis through leptogenesis. In this talk, I will give an overview of the kind of lepton-number violating (LNV) interactions that can be...
Large target masses and ultra-low background levels are now becoming commonplace for xenon-based rare event searches. As a result, current and future experiments will have unprecedented sensitivity to astrophysical neutrinos in multiple interaction channels. In this talk I will provide a brief overview of relevant neutrino sources and their interaction channels in xenon-based experiments while...
This talk will present plans and prospects for a next-generation neutrinoless double beta decay search with Theia, a novel hybrid Cherenkov+scintillation neutrino detector. Sensitivity to a broad program of additional physics will be presented, along with progress in R&D and technology demonstrations.
Detection of a single Ba2+ ion in many tons of xenon is a formidable technological challenge. The difficulty is exacerbated by the fact that Ba2+, the expected final state in double beta decay of gaseous 136Xe, has no visible-accessible optical transitions to use for atomic fluorescence spectroscopy. To overcome this challenge, the NEXT collaboration is developing a method of tagging...
Our group in the nEXO collaboration is developing a cryogenic method for Ba daughter tagging in neutrinoless double beta decay in liquid 136Xe. The principle is to capture the Ba daughter from liquid xenon by trapping it in a solid xenon layer on a cryogenic probe window and then scanning the layer with a laser for 1 Ba atom/ion or 0 Ba atom/ion. We can now image single Ba atoms in a solid...
Radio frequency (RF) carpets are ion beam transport devices that have become ubiquitous in nuclear science. They first appeared in large volume gas cells where they allowed the efficient transport at pressures around 100 mbar of thermalized radioactive ions produced in-flight. Then, more recently, they started to be used at lower pressures, in the 1-10 mbar range, to dissociate molecular...
With the development of fast sub-nanosecond photosensors and the increasing size of xenon-based detectors for neutrinoless double beta decay (
In this talk, we present the performance of a novel crystalline/vapor xenon TPC. Compared to liquid xenon, crystal xenon demonstrates >10^3 lower activity in radon, which is a leading background source in liquid xenon dark matter experiments (Pb214 betas) and tonne-scale 0vbb detectors (Bi214 gammas). The powerful radon exclusion capability of crystal xenon enables a larger fiducial volume for...
Thanks to recent observations of long-lived excited Cesium-136 states, xenon detectors now have the potential to serve as solar neutrino observatories by using charged-current interactions of the form
We introduced in 2019 a new concept for electroluminescence in noble elements, based on very-thick acrylic-based perforated structures (Field-Assisted Transparent Gas Electroluminescence Multipliers, or FAT-GEMs). The structures, other than being radio pure, scalable and robust, are also transparent, opening to the possibility of enhancing light collection efficiency. In this work we present...
LArTPCs highly doped with Xenon could be interesting platforms for probing MeV- and sub-MeV physics including neutrinoless-double beta decay. A main hurdle is the small fraction of scintillation photons that are collected, which significantly impacts LArTPCs' energy resolution. One solution is the use of photosensitive dopants, which convert light to charge. A team from Rutgers University and...
In modern searches for neutrinoless double beta decay (
By design, large-scale liquid xenon TPCs enjoy powerful self-shielding; gamma rays that would create backgrounds are strongly attenuated by the liquid at the edges of the detector. This, however, presents a challenge for calibrations: calibration sources placed outside the detector will only rarely penetrate to the center of the TPC, making the most sensitive region of the experiment also the...
Helium 3 has a high neutron capture cross section and adding it to xenon can mitigate Xe136 to Xe137 capture which decays in our region of interest.
Approaching the kiloton mass scale in rare event search experiments using Xenon places new, stringent demands on the light detection system. Aspects such as high radiopurity, low power consumption and simple mechanics are becoming as important as low noise and excellent quantum efficiency. Digital SiPMs is a light detector technology that meets all these requirements. In this technology, SPADs...
While SiPM use is increasing, it is well accepted that the one-to-one coupling of SPAD to a CMOS quenching circuit is the best way to leverage their single photon counting and precise timing capabilities. We develop photon-to-digital converters (PDC) that expand these capabilities with embedded time-to-digital conversion and advanced signal processing. The SPAD architecture, 3D integration...
NEXT-CRAB (Camera Readout And Barium tagging) aims to demonstrate an ultra-high resolution tracking detector that scales elegantly to very large future detectors that can incorporate barium tagging. To do this we are employing several novel techniques, one of which is using an optical readout for direct VUV imaging of the electroluminescence. This opens up the cathode plane for incorporation...
A Xenon Electroluminescence (AXEL) experiment is a
ELCC has a rigid, pixelized structure, that can be easily scaled to larger sizes, and have the ability to reconstruct 3D tracks. EL is a linear amplification...
Given that xenon production by cryogenic distillation is prohibitory in cost and insufficient in quantity to provide for the next generation of xenon detectors, adsorption of xenon onto porous materials may be a viable alternative. Activated carbons and zeolites are possible adsorbent candidates. However, the non-specific intermolecular interactions between these materials and xenon afflict...
In this talk I would discuss the potential detection sensitivity of XLZD towards supernova neutrino CE