Approaching the kiloton mass scale in rare event search experiments using Xenon places new, stringent demands on the light detection system. Aspects such as high radiopurity, low power consumption and simple mechanics are becoming as important as low noise and excellent quantum efficiency. Digital SiPMs is a light detector technology that meets all these requirements. In this technology, SPADs...
While SiPM use is increasing, it is well accepted that the one-to-one coupling of SPAD to a CMOS quenching circuit is the best way to leverage their single photon counting and precise timing capabilities. We develop photon-to-digital converters (PDC) that expand these capabilities with embedded time-to-digital conversion and advanced signal processing. The SPAD architecture, 3D integration...
NEXT-CRAB (Camera Readout And Barium tagging) aims to demonstrate an ultra-high resolution tracking detector that scales elegantly to very large future detectors that can incorporate barium tagging. To do this we are employing several novel techniques, one of which is using an optical readout for direct VUV imaging of the electroluminescence. This opens up the cathode plane for incorporation...
A Xenon Electroluminescence (AXEL) experiment is a $0\nu \beta \beta$ search experiment using high pressure xenon gas TPC.This TPC has a unique pixelized structure(ELCC) to read out Electroluminescence(EL) light from ionized electrons.
ELCC has a rigid, pixelized structure, that can be easily scaled to larger sizes, and have the ability to reconstruct 3D tracks. EL is a linear amplification...