Conveners
Methods: Methods - 1
- Arianna Gleason (SLAC)
Methods: Methods - 2
- Angelo Dragone (SLAC)
Methods: Methods - 3
- Gabriella Carini (Brookhaven National Laboratory)
Methods: Methods - 4
- Liam Claus (Advanced hCMOS Systems)
Ultrafast molecular gas phase diffraction is a vital tool for retrieving time dependent molecular structures. We are limited in the systems we can study as we generally require complex molecular dynamics simulations to interpret the results. We develop an alternative analysis to approximate the molecular geometry distribution $|\Psi(\mathbf{r}, t)|^2$ that does not require such complex...
Dynamic polymer networks (DPNs) are quickly emerging as attractive materials for future applications due to their robustness, flexibility, and reconfigurable characteristics. Reversible bonding and de-bonding in DPNs can be leveraged broadly for performance advantages, and also give rise to the stress relaxation phenomenon that can be measured experimentally. The goal of this study is to...
Novel detector structures are proposed regularly, mixing old and new ideas, with resistive detectors widening the landscape of possible configurations. In this talk, a universal way of calculating the signals induced in structures with resistive elements is presented. This is done by applying an extended form of the Ramo-Shockley theorem to several different detector configurations using...
Advances in MicroPattern Gaseous Detector (MPGD) technologies and readout devices allow significant improvements of timing resolution as well as novel imaging approaches. This contribution will focus on PICOSEC Micromegas achieving tens of ps timing precision as well as new developments in the optical readout of gaseous detectors taking advantage of state-of-the-art imaging sensors and fast...
Microchannel plate (MCP) based photomultiplier tubes (MCP-PMT) provide state-of-the-art timing performance for both analog and single photon detection in many fields such as plasma diagnostics, high energy physics, and Time-of-Flight Positron Emission Tomography. While intrinsic properties and limitations of these devices as used in analog mode have been well studied, detailed studies of...
Liquid microjets have found industrial, commercial, and technological applications such as machining, cooling, printing, and additive manufacturing. In internal combustion engines, high-pressure liquid-fuel injection plays the most crucial role in the energy conversion process to improve combustion efficiency and emission. Despite the importance, the liquid-jet dynamics have not been fully...
A novel design of the Depleted P-Channel Field Effect Transistor (DEPFET) with non-linear response is at the heart of the 1 Mpixel DSSC camera (DEPFET Sensor with Signal Compression) currently being developed for ultra-fast imaging of soft X-rays at the European XFEL. The simultaneous requirement of single-photon detection down to 0.5 keV and dynamic range up to 104 photons/pixel/pulse is here...
AI-in-Pixel: data compression at source
Farah Fahim, Manuel Blanco Valentin, Danny Noonan, Giuseppe Di Gugliemo, Panpan Huang, Adam Quinn, Jingmin Zhao, Chris Jacobsen, Nhan Tran
The demand for increasingly higher sensitivity and granularity of pixel detectors has resulted in voluminous data generation. A mega pixel readout Integrated circuit with 10b in-pixel ADC operating at 100 kfps...
This presentation will present the opportunities offered by nanophotonics to improve the performance of detectors including results obtained from the ATTRACT-Photoquant project [1] that aimed at demonstrating that recent nanophotonics innovations such as metalenses and more generally metamaterials could allow a breakthrough in single-photon time resolution. Silicon photomultipliers are...
In this presentation we will report about the recent progress in time resolved scattering and imaging experiments performed at DiProI end-station [1,2], one of the user dedicated instrument of FERMI seeded FEL user facility [3]. In the first part of the talk I will show the possibility, offered by mini-Timer split and delay unit [4], to tomographically illuminate the sample from two different...
A complex system is usually reflected in several aspects, such as multiple chemical components, entangled spatial structure, aeolotropic relative motion between components, chemical reactions, etc. Extracting the spatial-temporal evolution process of the target component in such a complex system puts forward higher requirements on the spatial resolution, temporal resolution, imaging depth and...
We introduce a model-free method to directly resolve in real-space ultrafast diffuse scattering signals, below the diffraction limit and recover multiple atomic pair distance motions [1]. The method uses natural scattering kernels, a scattering basis representation that is composed of the measurement parameters and constraints, and the subsequent inversion analysis, and leverages signal...