The T2K experiment in Japan studies neutrino oscillations by measuring $\nu_{e}$ appearance and $\nu_{\mu}$ disappearance from a $\nu_{\mu}$ beam using a near and far detector. Super-Kamiokande (SK), a large water Cherenkov detector, acts as the far detector, where charged products of neutrino interactions on water are observed as rings of light. Neutrino oscillation analyses at T2K currently...
An inclusive measurement of the cross section of the neutrino charged-current interactions on 127I will help study the quenching of gA , the axial-vector coupling constant, which determines the rate of neutrinoless double beta decays. At the Los Alamos Meson Production Facility (LAMPF), an exclusive measurement was made but with a large statistical error. To make an inclusive and more accurate...
The MicroBooNE experiment employs a Liquid Argon Time Projection Chamber (LArTPC) detector to measure sub-GeV neutrino interactions from the muon neutrino beam produced by the Booster Neutrino Beamline at Fermilab. Neutrino oscillation measurements, such as those performed in MicroBooNE, rely on the capability to distinguish between different flavors of neutrino interactions. Deep...
PROSPECT is an antineutrino detector located above ground at the High-Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The energy spectrum of antineutrinos emitted from the reactors is measured by using a delayed coincidence technique through the inverse-beta-decay reaction (IBD). The ORNL group is currently exploring several applications of machine learning techniques for...
The COHERENT collaboration utilizes a suite of detectors to search for CEvNS and associated backgrounds at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. CENNS-10, a single-phase liquid Ar detector operating since the spring of 2017, seeks to measure the CEvNS process in Ar. Standard pulse-shape discrimination in Ar makes use of the characteristic scintillation emission...
The IceCube Neutrino Observatory, which instruments a cubic kilometer of Antarctic ice, aims to detect astrophysical and atmospheric neutrinos. The detector contains 5160 photomultiplier tubes arranged in a 3D hexagonal array, which capture Cherenkov radiation emitted from the daughter particles of neutrino interactions. While IceCube detects astrophysical neutrinos in the TeV-PeV energy...
Deep neural networks (DNN) enabled countless breakthroughs in the fields of artificial intelligence and computer vision and they have been successfully applied to the data reconstruction of Liquid Argon Time Projection Chambers (LArTPC), which offer high resolution (~3mm/pixel) 2D or 3D imaging of charged particles' trajectories. The ICARUS detector is a large-scale (760-ton) LArTPC far...
The vector and axial form factors describe the electroweak structure of the nucleon. They are obtained from the analysis of the electron and neutrino scattering data.
Accurate predictions of the nucleon form factors are important for the proper modeling of the neutrino-nucleon and neutrino-nucleus cross-sections. I will review the Bayesian neural network approach, which allows us to obtain...
LArTPCs (Liquid Argon Time Projection Chambers) are one of the most promising types of detector in beam neutrino physics. When a neutrino interacts in liquid argon, the resulting leptons ionize the argon atoms which emit electrons. An electric field in the detector causes the electrons to drift to a set of wire readout planes which convert the analog signal into a digital one. The resulting...
Neutrinoless Double Beta Decay(0νββ) is one of the major research interests in neutrino physics. The discovery of 0νββ would answer persistent puzzles in the standard model. KamLAND-Zen experiment is one of the leading efforts in the search of 0νββ. The data is taken from 745kg of Xe136 isotopes using 1879 PMTs. Simultaneously, deep learning is a process of learning from data. Thus in this...
MicroBooNE has accumulated data in a 1E21 POT neutrino beam over five years to test the excess of low energy electron neutrino-like events observed by MiniBooNE. To this end, we have explored the use of a new hybrid analysis chain that includes both conventional and machine learning reconstruction algorithms to identify events with the exclusive 1-proton-1-electron signal topology. The...
MicroBooNE is a short baseline neutrino experiment at Fermilab aimed at measuring neutrino-argon cross-sections and probing for sterile neutrinos. The detector is a 85t Liquid Argon Time Projection Chamber (LArTPC) with three readout planes, each of which records charge depositions as 2D images of channel position versus time. We present a new deep learning method for reconstructing the 3D...
The unified approach of Feldman and Cousins allows for exact statistical inference of small signals that commonly arise in high energy physics. It has gained widespread use, for instance, in measurements of neutrino oscillation parameters in long-baseline experiments. However, the approach relies on the Neyman construction of the classical confidence interval and is computationally intensive...
This talk presents the application of sparse convolutional neural networks in three dimensions in the ProtoDUNE Liquid Argon Time Projection Chamber (LArTPC) detector, building on previous applications of the technique in other LArTPCs. Sparse convolutions allow for computationally efficient processing of very large and high-resolution three-dimensional images, making them a natural fit for...