Conveners
RDC9: Session #1 (Calorimetry)
- marina artuso (syracuse university)
- Minfang Yeh (Brookhaven National Laboratory)
RDC9: Session #2
- marina artuso (syracuse university)
- Minfang Yeh (Brookhaven National Laboratory)
RDC9: Round Table
- Minfang Yeh (Brookhaven National Laboratory)
- marina artuso (syracuse university)
The Electron Ion Collider (EIC) is the next Nuclear Physics flagship experiment to be constructed at Brookhaven National Lab over the next decade. The EPIC detector will be the first experiment at the EIC dedicated to detailed studies of nuclear structure in electron-proton and electron-ion collisions.
The ambitious physics program of the EIC requires a high performance hadronic calorimetry...
We recently proposed a high-granularity calorimeter insert for the EIC, which uses plastic scintillator tiles read out by silicon photomultipliers. In this talk, we present findings that characterize its fundamental components through measurements of light yield, optical crosstalk, and timing resolutions. These measurements were conducted using cosmic rays, an LED, and a beta source. We also...
We present results of a novel design for high-granularity calorimeters, incorporating multi-layered, staggered tessellations to enhance position resolution. Moreover, we introduce HEXPLIT, a sub-cell re-weighting algorithm tailored to harness staggered designs, resulting in additional performance improvements. By combining our proposed staggered design with HEXPLIT, we achieve an...
To address the challenges of providing high performance calorimetry in future hadron collider experiments under conditions of high luminosity and high radiation, we are conducting R&D on advanced calorimetry techniques suitable for such operation, based on scintillation and wavelength-shifting technologies and photosensor (SiPM and SiPM-like) technology. In particular, we are focusing our...
We present a study on the impact of detector granularity on machine-learning-based energy regression for high-granularity sampling calorimeters. As a case study, we simulate the response of a detector similar to the forward calorimeter system intended for use in the ePIC detector, which will operate at the upcoming Electron-Ion Collider. Models using DeepSets and graph neural networks are...
I will present the design and initial test beam results for a high-granularity calorimeter "insert" intended for the EIC. This design leverages SiPM-on-tile technology and introduces innovative features such as the use of 3D-printed frames to minimize optical crosstalk, as well as an ASIC-away-of-SiPM strategy to optimize spatial efficiency and reduce cooling requirements. We built a...
The Calvision project seeks to develop high resolution calorimetry for a future lepton collider with state-of-the-art performance for both electromagnetic (EM) and hadronic signatures using the dual-readout technique. We seek to improve the hadronic energy resolution of homogenous scintillating-crystal calorimeters through the measurement and separation of the scintillation and Cherenkov light...
We present simulations of whole-body low-dose time-of-flight positron emission tomo-graphy (TOF-PET) based on laminar microchannel plates (LMCP$^\rm{TM}$) packaged into High-Resolution Gamma Multiplier Tubes (HGMTs$^\rm{TM}$) [1]. 511 keV gamma rays interact in the LMCP via the photoelectric and Compton effects to create an electron through surface direction conversion [2], eliminating the...
The water-based liquid scintillator (WbLS) has many potential applications in nuclear and particle physics and other rare-event detections. The WbLS, as the primary detector target, allows simple detector design, minimum chemical hazard, and adjustable scintillation light yield. In addition, the separation of scintillation and Cherenkov events enables directional reconstruction and enhances...
Hybrid neutrino detectors utilize both Cherenkov and scintillation light to detect neutrino events, combining the lower energy threshold of pure scintillator detectors and enhanced direction resolution of water detectors. The benefits of hybrid detectors provide for advancements in fundamental physics goals as well as in applications such as nuclear nonproliferation. Experiments with small...
Future HEP calorimeters at the energy and intensity frontiers present stringent challenges to inorganic scintillators in radiation tolerance, ultrafast time response and low cost. We will report recent progresses in radiation hard, ultrafast, and cost-effective inorganic scintillators. Examples are LYSO:Ce crystals and LuAG:Ce ceramics for an ultracompact, radiation resistant shashlik sampling...
Lutetium-yttrium oxyorthosilicate (LYSO) is a high density, rugged/radiation tolerant, fast scintillator. For this reason LYSO crystal scintillators are used or planned in many High Energy Particle experiments (as e.g., KLOE-2, srEDM, COMET, CMS Barrel Timing Layer) in medical diagnostic devices (PET, TAC, CT) and in current and planned astroparticle physics space calorimeters (as e.g.,...
Two major drawbacks to time-of-flight positron emission tomography (TOF-PET) are low spatial resolution and high radioactive dose to the patient, both of which result from limitations in detection technology rather than fundamental physics. To address these, a new type of TOF-PET detector employing low-atomic number (low-Z) scintillation media recording Compton scattering locations and...
The SiD Collaboration has had a long interest in the potential for improved granularity in the tracker and ECal; a study of MAPS in the SiD ECal was described in the 2013 ILC TDR . Work is progressing on the MAPS application in an upgraded SiD design, both for the ECal and tracking. A prototyping design effort is underway for a common SiD tracker/ECal design based on stitched reticles to...