Conveners
RDC1: Session #1 (Noble Element Detectors)
- Jonathan Asaadi (University of Texas Arlington)
- Carmen Carmona (Pennsylvania State University)
RDC1: Session #2
- Jonathan Asaadi (University of Texas Arlington)
- Carmen Carmona (Pennsylvania State University)
RDC1: Session #3
- Carmen Carmona (Pennsylvania State University)
- Jonathan Asaadi (University of Texas Arlington)
We present the crystalline xenon time projection chamber (TPC), a promising novel technology for next-generation dark matter searches. Initial tests have established that it maintains many of the benefits of the liquid xenon TPC while also effectively excluding radon, the dominant background in currently-running xenon dark matter experiments such as LZ. This offers the potential for greatly...
The Liquid Xenon Proportional Scintillation Counter (LXePSC) is a single-phase liquid xenon detector capable of producing electroluminescence directly in the liquid phase. In doing so, we are able to disregard the extraction efficiency, as seen in dual phase LXeTPCs, and simplify the detector design and operation by not needing to maintain a liquid-gas interface. In this talk, we will present...
Dual-phase noble liquid time projection chambers (TPCs) are known to experience delayed ionization backgrounds which persist for at least a second after an ionization event occurs. Their rate has been observed by some experiments to exhibit a characteristic power law in time, but the cause is not yet understood. This work presents an analysis of delayed ionization backgrounds from different...
Direct dark matter searches have reported dramatically increased sensitivity to sub-GeV parameter space by taking into account the “Migdal Effect”, a predicted inelastic process in which a neutral particle scattering with a nucleus results in the ejection of a bound electron from the recoiling atom. However, the Migdal Effect has never been experimentally observed, and should be confirmed and...
The LUX-ZEPLIN (LZ) experiment utilizes 7 tonnes of active liquid xenon to search for dark matter at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber, primarily designed for detecting Weakly Interacting Massive Particles (WIMPs). In this talk, I will discuss the novel features and performance...
The nEXO detector, a 5-tonne liquid xenon time projection chamber enriched to 90% in Xe-136, will search for the hypothetical decay process known as neutrinoless double beta decay with a half-life sensitivity > $10^{28}$ years. As part of this search, the nEXO collaboration is developing a radiopure charge readout system which will help reach nEXO’s sub-percent energy resolution goal and its...
Dual-phase LArTPCs have demonstrated the capability of achieving sub-keV thresholds in the electron-counting S2-only channel, making them powerful tools for light dark matter searches, measuring coherent elastic neutrino-nucleus scattering at nuclear reactors, and other low-energy applications. However, efforts to study the lowest accessible energies in these detectors are complicated by...
Xenon and argon are widely used target media for low cross-section experiments including neutrino physics and dark matter searches. Xenon-doping of dual phase argon time projection chambers (TPCs) at the O(1%) level may substantially improve detector sensitivity. However, the large temperature discrepancy between the argon and xenon phase transition points can cause instabilities in a...
We report measurements of the transverse diffusion parameters of electrons through P10 gas (90% Ar, 10% CH4) in a laboratory-scale time projection chamber (TPC) using a novel pixelated signal capture and digitization method. The method, Q-Pix, consists of a precision switched integrating trans-impedance amplifier whose output is compared to a threshold voltage by a comparator. The comparator...
Liquid xenon time projection chambers (TPCs) are leading the search for particle dark matter with mass greater than 5 GeV. HydroX is a proposed upgrade to enhance their sensitivity to masses as low as 10s of MeV, by doping the xenon with a light element such as hydrogen. The dopant nucleus provides a better kinematic match for lighter particles, but its presence may interfere with signal...
Liquid argon has become the primary detector material in many neutrino and dark matter experiments like DUNE, SBND, ICARUS, MicroBooNE, and DarkSide. In particular, multi-kiloton experiments like the Deep Underground Neutrino Experiment (DUNE) have stringent requirements for systematic uncertainties on the energy scale and resolution. Neutron production from neutrino interaction brings a large...