7–10 Nov 2023
SLAC
America/Los_Angeles timezone

Light yield non-proportionality of LYSO scintillators to gamma rays and measurement of the Birks-Onsager quenching parameters.

8 Nov 2023, 16:45
15m
51/1-102 - Kavli Auditorium (SLAC)

51/1-102 - Kavli Auditorium

SLAC

150
Oral RDC9: Calorimetry RDC9

Speaker

Francesco Nozzoli (INFN-TIFPA)

Description

Lutetium-yttrium oxyorthosilicate (LYSO) is a high density, rugged/radiation tolerant, fast scintillator. For this reason LYSO crystal scintillators are used or planned in many High Energy Particle experiments (as e.g., KLOE-2, srEDM, COMET, CMS Barrel Timing Layer) in medical diagnostic devices (PET, TAC, CT) and in current and planned astroparticle physics space calorimeters (as e.g., HEPD-01, HEPD-02, NUSES, Crystal-Eye, HERD, ALADInO, AMS-100).
On the other hand, a relatively strong light quenching phenomena was observed in LYSO scintillators when irradiated with highly ionizing particles. The current uncertainties in the modeling and in the measurement of quenching parameters for LYSO could affect the capability of a precise determination of shower energy in LYSO-based hadronic calorimeters planned for future space experiments.
In this work, the scintillation response of a Ce-doped LYSO crystal is investigated with several radioactive sources in the INFN-TIFPA laboratory and a non-proportionality of the light yield for sub-MeV gamma rays is measured. The effect of the scintillation quenching of relatively slow electron recoils produced by low-energy gamma rays in the LYSO scintillator is evaluated with a dedicated GEANT4 simulation to describe the measured light yield non-proportionality.
In the framework of the Birks-Onsager model, the quenching parameters for low-energy electron recoils are inferred. The comparison with the previous measurements of LYSO quenching parameters, using nuclei at particle beam from proton to Argon, is a powerful test for the underlying quenching theory, that appears to be valid for different particles in a wide kinetic energy range from several GeV nuclei down to few keV electrons.

Early Career No

Primary author

Francesco Nozzoli (INFN-TIFPA)

Co-authors

Mr Luigi Ernesto Ghezzer (Universita degli Studi di Trento) Mr Riccardo Nicolaidis (Universita degli Studi di Trento and INFN-TIFPA)

Presentation materials