Light yield non-proportionality of LYSO(Ce) scintillators to x/γ rays and measurement of the Birks-Onsager quenching parameters.

<u>Francesco Nozzoli</u> & Riccardo Nicolaidis Physics Department, University of Trento INFN-TIFPA

Coordinating Panel for Advanced Detectors (CPAD) Workshop 08 November 2023, SLAC National Accelerator Laboratory

Scintillating materials

LYSO calorimeters in space

LYSO(Ce) Lutetium-Yttrium Oxyorthosilicate is **fast** (~40ns) **dense** (7.1g/cm³) **high Z** ($Z_{\rm eff}$ ~60) strong and good scintillator (LY~30ph./keV) For this reason is adopted in medical devices, in current space experiments and in planned space calorimeters.

However LYSO is non-proportional (& slightly radioactive)
Response of LYSO needs an accurate calibration to avoid
systematic effects in measured particle fluxes at high-E

AMS-02 (2019)

DAMPE (2017) Fermi-LAT (2017)

CALET tot, uncert.

CALET (2021), preliminary

250

200

150

100

50

Energy [GeV]

Non-proportional light response at high dE/dx (the Birks quenching)

Excitons: neutral carriers, higher mobility

exciton (higher energy)
exciton NR recomb. = phonons

dL

$$\frac{dL}{dx} = \frac{dL}{dE} \frac{dE}{dx}$$

Koba et al. "Scintillation Efficiency of Inorganic Scintillators for Intermediate-Energy Charged Particles"

DOI: 10.15669/pnst.1.218 *Prog.Nucl.Sci.Tec.*1(2011)218

	NaI(Tl)	CsI(Tl)	GSO(Ce)	LSYO(Ce)	$a\mathbf{E}$
Birks a k _B	0.905 9.10x10 ⁻⁴	1.08 1.29x10 ⁻³	1.03 3.22x10 ⁻³	0.938 7.60x10 ⁻³ g/((cm²MeV)

Koba et al. "Light Output Response of LYSO(Ce) Crystal to Relativistic Helium and Carbon Ions" Vol.3 2007 IEEE Nucl.Sci.Symp.Conf.Rec. DOI:10.1109/NSSMIC.2007.4436606

- $k_{\rm p} = 5.68 \times 10^{-3}$ cm/MeV Helium beam **99**
- $k_{\rm g}^{\rm B} = 1.03 \times 10^{-3} \text{ cm/MeV}$ Carbon beam

?? puzzling

Non-proportional light response at high dE/dx (generalised Birks)

Excitons: neutral carriers, higher mobility

exciton (higher energy)
exciton NR recomb. = phonons

$$\frac{dL}{dx} = \frac{dL}{dE} \frac{dE}{dx}$$

G. Tarle, The Astrophysical Journal, 230:607-620, June 1979.

$$\frac{dL}{dE} = \frac{1}{1 + k_B \frac{dE}{dx}} \xrightarrow{\int} \frac{1 - \eta_H}{1 + k_B (1 - \eta_H) \frac{dE}{dx}} + \frac{\eta_H}{\int}$$

Introducing a percentage of carriers escaping the ionization cylinder

escaping fraction of carriers that radiatively recombines

Non-proportional light response at low dE/dx (the Onsager term)

 $\eta_{e/h}$

Fraction of initial electrons and holes that do not form excitons. They can combine to form new excitons if they are closer than the Onsager radius

$$L_o = 1 - \eta_{e/h} e^{-\frac{dE/dx}{(dE/dx)_o}}$$

Stephen A., IEEE Transactions on Nucl. Sci., 56(6):2506–2512, 2009

A reference model for non-proportional light response in scintillator is:

$$\frac{dL}{dE} = \left[\frac{1 - \eta_H}{1 + k_B (1 - \eta_H) \frac{dE}{dx}} + \eta_H \right] \left[1 - \eta_{e/h} \exp\left(-k_o \frac{dE}{dx}\right) \right]$$

Generalised Birks term

Onsager term

Non-proportional light response

$$rac{dL}{dE} = egin{bmatrix} rac{10^2 & 10^2 & 10^3 & 10^4 \ rac{dL}{1+k_B(1-\eta_H)rac{dE}{dx}} + \eta_H \end{bmatrix}$$

Adriani et al, 2022 JINST 17 P08014 "Light yield non-proportionality of inorganic crystalscand its effect on cosmic-ray measurements"

$$\left[1 - \eta_{e/h} \exp\left(-k_o \frac{dE}{dx}\right)\right]$$

Generalised Birks term

Onsager term

The measurements of Adriani et al. (2022)

Quenching measured with (Minimum Ionizing) relativistic nuclei with Z ranging from 1 to 18

Results in term of (mod.) Birks-Onsager reference model:

Material	$\eta_{e/h}$	$(dE/dx)_O$	η_H	1/k _p
		MeV/cm		1/k _B MeV/cm
BGO	0.159 ± 0.033	98 ± 45	0.1884 ± 0.0039	364 ± 42
CsI(Tl)	0.326 ± 0.010	34.1 ± 2.8	0.121 ± 0.012	1338 ± 64
LYSO	0.758 ± 0.045	164.7 ± 8.4	0.0274 ± 0.0048	45.1 ± 9.1

 $\eta_{\rm e/h}$ is not compatible with 0 => not "pure" Birks, Onsager term is required

How to compare with other/previous LYSO data?

- 1) Complementary information from response to x/γ ray
- 2) Koba et al (2011-2007): He-C have $1/k_p = 180$ to 1000 MeV/cm
- 3) HEPD-02 Proton beam test (analysis still ongoing)

Our measurement of LYSO Light Yield with γ rays @ INFN/TIFPA

we calibrate the detector with gamma rays from ²⁴¹Am ¹³³Ba ¹⁷⁶Lu ²²Na ¹³⁷Cs and ⁶⁰Co sources

("by-product" of the search for rare EC decay in ¹⁷⁶Lu)

PHYSICAL REVIEW C 107, 045504 (2023)

DOI: 10.1103/PhysRevC.107.045504

Search for electron capture in ¹⁷⁶Lu with a lutetium yttrium oxyorthosilicate scintillator

Luigi Ernesto Ghezzer, Francesco Nozzoli , ** Riccardo Nicolaidis, Roberto Iuppa, and Paolo Zuccon
INFN-TIFPA and Department of Physics, Trento University, Via Sommarive 14 I-38123 Trento, Italy

TIFPA

50% reduction of Light Yield of LYSO for 10 keV x/γ rays

- confirmation of the effect observed by many measurements in the past
- the existing measurements have not negligible (not quoted) systematic errors
- is hard to reject the ¹⁷⁶Lu background (40Bq/g)

the Geant4 simulation:

To characterize and calibrate the LYSO crystal:

- Adopted the Birks+Onsager quenching model
- Geant4 simulation with very high spatial resolution
 10nm maxstep and 1nm secondary production cuts
 (FTFP_BERT + G4StandardEM_op4 + G4EmLowEPPhysics)
- At each step we computed the contribution to the LY based on the dE/dx locally computed.

fit of experimental data and inference of parameters based on the G4 MC simulations

Geant4-based MonteCarlo Fit

Heavy load of computation

found (expected) dependence on step size. Systematic related to MC under investigation

Results: forcing $\eta_{e/h}$ = 0 ("pure" Birks, no Onsager)

- not good chisquares are obtained
- forcing $\eta_{e/h}$ = 0 not full compatibility
- Koba (2007) He beam result "puzzling"

Results: $\eta_{e/h}$ > 0 (the "reference" model Birks + Onsager)

 k_B are compatible with Adriani (2022) η_H = 0 is preferred by Koba & x/ γ rays

Results: $\eta_{\rm e/h}$ > 0 (the "reference" model Birks + Onsager)

- observed the (expected) strong correlation of k_B and $\eta_{e/h}$ indication for a relatively large $\eta_{e/h}$ comes from all the measurements a "pure" Birks ($\eta_{e/h}$ = 0) rejected with high C.L. x/γ rays information is "folded" and cannot give precise inference of k_o

Conclusion / to-do list

The qualitative picture:

- Birks-Onsager model works from few keV electrons to few GeV nuclei

The quantitative agreement is not perfect:

- would be nice to plot the 1σ contours from Adriani et al. (2022)
- possible systematics in measurements [e.g. He vs C in Koba et al. (2007)]

- (ongoing study) systematics of the heavy MC computation for x/γ rays

A new proton beam test made in 2023:

@ INFN-TIFPA for LYSO used in HEPD-02 detector (analysis ongoing)

Thank you!

100

Koba (2011)

New measurements

dE/dx [MeV/mm]