MeV-UED Run-4 Summary and Future Capabilities on Chemical Science MeV-UED Instrument Advisory

MeV-UED, AD, LCLS Nov. 18th, 2024 Yusong Liu

Direct structural probe within femtosecond temporal resolution

Theoretical verification from UED measurement observables

Todd Martínez

Experiment: Run-4, UED119, Jan. 21st, 2024 Alice Green Thomas Wolf

MeV-UED chemical program

Experiments summary and capabilities development

Discussion agenda

- Gas Phase Chemical Program in SLAC MeV-UED
- Run-4 gas phase UED experiment summary
 - Run-4 experiments and operation
 - Newly emerged experimental capabilities

GUED ongoing R&D efforts towards to future experimental capabilities

- > Deep UV light generation
- Slit-jet sample delivery
- Electron detection and diagnostics

Conclusion

Summary of Run-4 GUED experiments

GUED Run-4, Nov. 2023 to Jun. 2024

- Very successful user run
 - Many experiments accomplished
 - Two sample delivery protocols offered
 - Multiple laser excitation wavelengths

Run-4 summarv

SLAC

7

Summary of past Run-4 GUED experiments operation

Beamtime highlights

Direct vs. Stepwise iodine elimination in 2and 3-Iodothiophenes

Ring-opening and isomerization of Oxazole

Run-4 results

.AC

SL

Summary of Run-4 GUED experiments operation

Summary of Run-4 GUED experiments operation

Take home messages

Achievements

- Standard configuration with flow-cell
 - Stable running condition with efficient usage of machine hours
 - Consistently high success rate with the refined capabilities
- New capabilities expanding science cases with slit-jet sample delivery
 - Successful transition from R&D to user experiments
 - Running up to 250 °C for a Torr level.
 - High quality data for user experiments
- MeV-UED user community expended in chemical science

Remining challenging need further efforts

- Higher repetition rate (Joel's talk),
 - Pushing from 360 Hz to 1080 Hz
- Higher sensitivity in electron detections
 - ✤ Andor optical camera
 - ePix direct detector
- Further improvement on the sample delivery
 - ✤ Slit-jet sample delivery
 - ✤ Up to 500 °C.
- Strong need for improvement of temporal resolution

Experiments summary and capabilities development

Discussion agenda

- Gas Phase Chemical Program in SLAC MeV-UED
- Run-4 gas phase UED experiment summary
 - ➢ Run-4 experiments and operation
 - Newly emerged experimental capabilities

GUED ongoing R&D efforts towards to future experimental capabilities

- > Deep UV light generation
- Slit-jet sample delivery
- Electron detection and diagnostics

Conclusion

Ongoing R&D efforts enabling new capability in GUED

Improvement in laser capabilities

Current laser capabilities in MeV-UED

200 nm, 240 nm – 2.4 \mum, mid-IR up to 12 um, THz (100 - 300 um)

Gap between 200 and 240 nm (Deep UV generation)

Experimental capabilities

Xinxin Cheng

Ongoing R&D efforts enabling new capability in GUED

Improvement in sample delivery system

SLAC Experimental capabilities

Slit-jet (Ming-Fu Lin and team)

- Motion and alignment control
- Keep optimizing the designing
- Active cooling (operation efficiency)

Catcher

- > Dynamic monitoring of sample accumulation
- Larger capacity of sample
- Optimizing the structure
- ✤ Further testing
 - Pushing towards to 500 °C

Ongoing R&D efforts enabling new capability in GUED

Improving electron detection and characterization

- Andor optical camera and ePix10K electron direct detector
 - >Andor optical imaging system (phosphor to EMCCD)
 - Larger Q range, higher collection efficiency, Less imaging distortion
 - ►ePix direct detector
 - Higher detection sensitivity, larger Q range, Single-shot detection
- Improvement on temporal resolution (THzbased streaking time-tool)
 - Push from 150 fs to sub-100 fs or even shorter
 - Feasible to observer fast wavepacket dynamics and structure changes

Diffraction patterns Andor vs. ePix

Conclusion

Run-4

Significant achievements and insights into ultrafast chemical dynamics enhancing our understanding of rapid molecular transformations.

Ongoing R&D efforts

Through continuous efforts in R&D projects, we have established various *new capabilities*, including advanced sample delivery methods, expanded laser wavelength options, enhanced electron detection techniques, and pushing to the improvement of temporal resolution.

Looking forward

Continued advancements in high performance of the electron source and detector technology will further enhance MeV-UED's precision, opening new pathways for studying complex reactions and dynamic processes central to chemical innovation.

Acknowledgements

MeV-UED team members

Joel England

Xiaozhe Shen

Stephen Weathersby Cameron Duncan Fuhao Ji

Tianzhe Xu

Sharon Philip

Thomas Wolf

Ming-Fu Lin

Yusong Liu Surjendu Bhattacharyya Jake Koralek

Stanford.

Patrick Kramer Matthias Hoffmann Brian Kaufman Randy Lemons Samul Eisenberg

