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➢ UED R&D roadmaps and scientific needs

➢ ePix single electron detector developments

➢ High brightness electron source developments

➢ AI/ML for improving facility operations and assist in scientific discoveries

➢ Summary



R&D roadmap and scientific needs in critical areas

➢ KHz Repetition rate operation upgrade (Joel)
➢ THz Timing tool (TT) development (Joel)
➢ ePix single electron detector
➢ UED gun developments
➢ AI/ML

Y. Liu, X. Shen and A. Reid, UED Instrument Retreat Report, March 14, 2023



Direct electron detector (2022)

Polycrystalline Bismuth thin film sample

Pump-probe signalRadial profileDiffraction pattern

➢ 1st round commissioning (2022) demonstrates frame-by-frame collection 
of single-pulse electron diffraction patterns at the MeV-UED instrument.

➢ Capable of performing single electron detection and eliminate cosmic-
rays/stray light backgrounds and optical aberrations 

➢ Generates 360 frame/s data flow, running single electron finding 
algorithms with > 300 CPUs on SLAC computation cluster S3DF

ePix10k detector
• Single electron detection
• 704 x 768 pixel sensor
• Flexible gain modes
• Pixel size: 100 um
• Readout rate 360 frame/s



Direct electron detector (current)

➢ Detector malfunctioning due to heating damage-> Adding temperature sensors to monitor detector status

➢ Repair and re-installation of ePix detector in Sept 2024

➢ Demonstrated 360 Hz data taking over 12 hours operation, commissioning experiment undergoing aims to 
run the ePix detector in a non-trivial solid-state experimental scenario over 24-hour shifts

➢ The result will allow user groups to make informed decisions about their run 5 experimental configurations  
and whether to use the ePix detector instead of the EMCCD platform

Temp sensor readouts Data taken on Nov 12, 2024

Physical review B 106, 195131(2022) 

CO quenching in Fe3O4
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Ultra-high brightness electron source R&D

The SLAC/UCLA/BNL type 1.6 cell S-band RF gun

✓ Electron source for SLAC MeV-UED and LCLS-I
✓ 1.6 cell design, mature 2.86 GHz normal 

conducting technology
✓ Demonstrated stable operation for > 10 years
✓ High gradient operation, 90-120 MV/m cathode 

gradient
✓ Direct output MeV energy beams (3 – 4.2 MeV)

for pancake (A>>1) beam

I. Bazarov, B. Dunham, and C. Sinclair, PRL 
102, 104801(2009)

• For 1.6 cell gun, launching phase is ~37 degree -> 54 
MV/m launch gradient

• Shorter cathode cell -> larger acc field at cathode
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Ultra-high brightness electron source R&D

• Multi-objective genetic optimizations using the proposed 1.4 cell gun and the UED beamline configurations

• Simulations show that a by tuning the gun phase, a strong bunching configuration can be achieved

• Beam parameters at sample plane: rms pulse length = 5.02 fs, normalized emittance = 2.36 nm

current working 

point

>100x 5D brightness increase

Sub 10 fs electron 
pulses at sample plane

1.4 cell gun
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Ultra-high brightness electron source R&D

1 Å−1

𝜎𝑞 < 0.03 Å−1

1 Å−1

𝜎𝑞 = 0.13 Å−1

Current ASTA 1.6 cell gun Alternative 1.4 cell gun

Simulated q-resolution 
enhancement with new high 
brightness gun design
• 10 fC pulse charge (nominal 

condition for MeV-UED 
operation)

• GPT simulation of 7 deg rotated 
WS2 bilayer

• Results can be further improved 
with collimation



➢ How to optimize the facilities and instruments for achieving physics limited performance to 
enable the discovery of new sciences? -> AI/ML based methods

➢ The requirements for electron beam properties are multi-dimensional
➢ Gas/liquid phase: temporal length, pulse charge
➢ Solid state: temporal length, probe size, momentum space resolution

➢ Electron beam property optimization often relies on time-taking hand tuning by human 
operators. Algorithm based tuning strategies are highly desired

AI/ML for improving MeV-UED operations 
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small sampleComplex features in 
momentum space

Nature Nanotechnology 18, 29–35 (2023)

Fast process

Science 368, 885-889 (2020)



Multi-objective Bayesian optimization (MOBO)
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➢ The goal is to determine the Pareto Front giving the best achievable trade-offs between objectives

➢ Deployed cutting-edge AI algorithm(MOBO) at MeV-UED

➢ 10 times more efficient than evolutionary algorithms

➢ A critical step toward online multi-objective optimization on real accelerator systems

Swarm and Evolutionary Computation 44 (2019) 945–956 

Expected Hypervolume Improvement (EHVI)

SLAC AD Machine Learning group



Multi-objective Bayesian active learning for MeV-UED
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➢ Experiments conducted at SLAC-MeV UED facility

➢ Competing objectives due to space charge forces: electron pulse length (𝜎𝑡), 

spot size at sample (𝜎𝑥) and momentum space resolution (𝜎𝑞)

➢ Explore the responses of [𝜎𝑡, 𝜎𝑥, 𝜎𝑞] to gun phase (𝜙), gun solenoid strength 

(𝐵1) and micro-focus solenoid strength (𝐵2) and obtain Pareto Fronts giving 

trade-offs between them

F. Ji, et al., Nat. Commun. 15, 4726 (2024)

Input: Given a set of observations 𝒟𝑁 = { 𝒙1, 𝒚𝟏 , 𝒙2, 𝒚2 , … , (𝒙𝑁, 𝒚𝑁)} 

for i in range(number of measurements):

1. Each objective modeled as an independent GP model:

 𝑦𝑚~𝐺𝑃𝑚[𝜇𝑚 𝒙 , 𝑘𝑚(𝒙, 𝒙′)]

2. Calculate the EHVI acquisition function

𝛼𝐸𝐻𝑉𝐼 𝜇, 𝜎, 𝒫, 𝒓 = න
ℝ𝑀

𝐻𝐼(𝒫, 𝒚, 𝒓) ∙ 𝒩𝜇,𝜎 𝒚 𝑑𝒚

3. Determining next observation point

𝒙𝑛𝑒𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛼𝐸𝐻𝑉𝐼)

4. Do observation

𝒚𝑛𝑒𝑥𝑡 = 𝑓 𝒙𝑛𝑒𝑥𝑡

5. Update 𝒟𝑁

end for



Multi-objective Bayesian active learning for MeV-UED
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➢ Measurements of 𝜎𝑡, 𝜎𝑞 projected to the 𝜙 − 𝐵1 and 𝐵1 − 𝐵2 subspace, along with posterior mean predicted by the GP

➢ MOBO strategically proposes the next observation point, and is more data efficient than a broad, undirected search for 

the PF

➢ The Learned PF provide an unprecedented overview of system behavior and can assist human scientist in rapid decision 

making during very limited beamtime

➢ Marks the first instance where MOBO has been applied to actively learn and navigate through the trade-offs of key beam 

properties that have a direct and substantial impact on the outcome of scientific user experiments

F. Ji, et al., Nat. Commun. 15, 4726 (2024)



Multi-objective Bayesian active learning for MeV-UED
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➢ Spot size vs q-resolution optimizations under different initial pulse charges

➢ Convergence plot shows hypervolume achieves 95% of it’s maximum within 30 measurements in average

➢ The hypervolume obtained using a grid search(GS) was 62% of that obtained using MOBO after 30 

measurements. 

➢ The comparison between MOBO and GS shows clear advantage of MOBO to improve both optimization 

efficiency and maximum achievable hypervolume

F. Ji, et al., Nat. Commun. 15, 4726 (2024)



AI/ML to assist in accelerating scientific discoveries
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➢ Solid state UED

➢ Sample tuning: 4 degrees of freedom: x, y, pitch and yaw

➢ 2D slices of the reciprocal space on detector

➢ Other variables: temperature, pump wavelength/energy, pump-probe delays

➢ Bayesian algorithms to assist in the search of charge orders in strong 

correlated materials

Phys. Rev. B.106.195131 (2022)

Courtesy of BNL TEM group

x

y
pitch

yaw

qx

qy



Summary
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➢ Critical needs have been identified from UED strategic planning efforts and user feedback

➢ Intense R&D efforts undergoing  aiming at  improving flux and resolutions of the MeV-

UED instrument

➢ ePix detector capable of performing shot-by-shot single electron detection and 

achieving ultrahigh SNR, ready for production for UED run5

➢ 1.4 cell gun optimization studies showing that ultrahigh brightness beams with < 10 

fs pulse length, < 2 nm normalized emittance could be achieved

➢ Cutting edge AI algorithm applied for online optimizations of key beam properties

➢ AI/ML techniques holds the potential of improving facility operations and accelerating 

scientific discovery 
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MeV-UED: Capabilities and Science enabled
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Conformer-specific photochemistry imaged in real 

space and time (Science  374, 178-182 (2021))

Gas-phase

Rapid energy transfer between two-dimensional 

hetero-structures  (Nature Nanotechnology  18, 

29-35 (2023))

Solid-state

Ultrafast hydrogen bond strengthening in liquid 

water

 (Nature  596, 531-535 (2021))

Liquid-phase

Ultrafast phase dynamics switches in a quantum 

electronic device

 (Science  373, 352-355 (2021))

Operando UED

➢ Probe structural and electronic dynamics in solid, gas and liquid systems 
under optical pumps and operando excitations

➢ Science opportunities in the key areas:
➢ Resolve structural and electronic dynamics during photodissociation 

events
➢ intramolecular Proton transfer & migration dynamics
➢ Momentum-resolved transient phonon populations in thin mono-

layer materials 
➢ Exploring energy pathways and structure-function relationships in 

hetero-structure based low dimensional systems
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Ultra-high brightness electron source R&D

• Improve instrument time resolution towards 50 fs
• Increase electron flux to > 1e8 electrons/sec
• Improve transverse emittance to reach ∆q = 0.01 Å-1

To meet future user requirements on electron flux, spot size, and time resolution, 
a new higher brightness, lower emittance electron source is needed

current working 

point

Current ASTA gun vs new design

>100x 5D brightness increase

1.4 cell S-band design compatible 
with existing RF & laser systems

Optimized for UED beam parameters

Mid-Term (1-2 Year) Goals / Milestones Key Personnel/Responsibilities

Prototype of 1.4-cell S-band gun design UED AD with Test Fac and TID RFAR support

Dedicated online (shot-to-shot) THz time-tool UED AD & LCLS team with Laser & Nanni Groups

Upgrade of the ePix detector to kHz rep rate UED AD & LCLS team with TID Sensor Group

Laser DFG + HCF wavelength extension for UV pump UED LCLS with Laser group support



Multi-objective Bayesian active learning for MeV-UED
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➢ The MOBO algorithm was used for sampling the parameter space efficiently with little prior knowledge

➢ The achieved performance was comparable with that obtained by experienced human operators and takes 

significantly fewer measurements

➢ Marks the first instance where MOBO has been applied to actively learn and navigate through the trade-offs 

of key beam properties that have a direct and substantial impact on the outcome of scientific user 

experiments

➢ This method is is flexible, efficient and can be used in other experimental scenarios

Nat. Commun. 15, 4726 (2024)
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