Physics Software & Computing US HFCC Level-2 Area

Lothar Bauerdick/Fermilab, Mike Hance/UC Santa Cruz (Level-2 Managers)

Physics Software & Computing

Dual mandate for this group:

- Development of software and computing resources for Higgs Factories
- Increasing engagement of US physicists in Higgs Factories through training and documentation

<u>Current focus</u>: identifying interested people/groups; developing resources for new users; and understanding where the US can/should engage more in existing international PS&C efforts

See <u>kickoff meeting</u> for more details on some specific target areas, including:

- Physics SW
- Core SW
- Computing

Parallel session agenda

0:45 AM → 1	12:30 PM	Parallel: Physics Software & Computing	53/2-2002 - Berryessa	₫ *
		Zoom room: https://stanford.zoom.us/j/94300744053?pwd=ImDSE2uTaS2lt8yy3lUqmIqWFcq2uK.1		
		Conveners: Lothar Bauerdick (FNAL), Mike Hance (UCSC)		
		10:45 AM Introduction	③ 5m	2 -
		Speakers: Lothar Bauerdick (Fermilab), Michael Hance (UC Santa Cruz)		
		2024-12-19 SLAC P		
		10:50 AM Key4HEP overview	O 30m	₽` •
		Speaker: Juan Miguel Carceller (CERN)		
		20241219-key4hep		
		11:25 AM MC Generators for Higgs Factory studies	O 20m	2 -
		Speakers: Prof. Saptaparna Bhattacharya (SMU), Saptaparna Bhattacharya (Northwestern University)	
		FCCee_Generators		
		11:50 AM Core Software, from LHC to Higgs Factories	O 20m	2 -
		Speaker: Vakho Tsulaia (LBNL)		
		CoreSW4HiggsFact		
		12:10 PM Analysis Software in Key4HEP and beyond	③ 20m	₽ -
		Speaker: David Lange (Princeton)		
		P fhf_241219_lange.pdf		

Juan Miguel Carceller

Turnkey software for future colliders

 Share components to reduce maintenance and development cost and allow everyone to benefit from its improvements

Key4hep

- Complete data processing framework from generation to data analysis
- Community with people from many future experiments: FCC, ILC, CLIC, CEPC, EIC, Muon Collider, etc.

Open biweekly meetings

Juan Miguel Carceller

Key4Hep

- Significant progress in past ~year within Key4Hep:
 - Stabilizing interfaces, data model (EDM4hep)
 - Wrappers for event generators
 - Improved tools for detector modeling
 - Increased buy-in from EIC, CEPC, Muon Collider
- Still significant work to be done, especially in areas of US strength:
 - Core SW: Gaudi framework; multithreading/MPI support
 - Reconstruction software, especially for FCC-ee: ACTS integration
 - Analysis SW: python ecosystem

Sapta Bhattacharya

Generators for Higgs Factories

- Requirements for physics event modeling at Higgs Factory:
 - Precise computation of α_s
 - NnLO and NnLL resummation
 - High-precision electron PDFs (collinear/soft photon emissions)
 - To fully exploit Tera-Z program at FCC-ee, need:
 - At least NNLO EWK needed for almost all computations
 - For Bhabha scattering: N³LO for luminosity
- Tour of Event Generators
 - Pythia, Herwig
 - Sherpa (now with parallelization [PEPPER])
 - MadGraph (now with GPU support for matrix element
 - [Madgraph4GPU])
 - Whizard, BabaYaga
 - parton-level calculators

Core SW from LHC to Higgs Factories

Key4Hep uses Gaudi event processing framework, like ATLAS and LHCb

- Some evolution of Gaudi has brought substantial new features:
 - Multithreading support: GaudiMT
 - Soon "Heterogenous Gaudi" for CPU+GPU jobs ("Asynchronous Algorithms")
- Experiments add a lot of functionality in layers on top of Gaudi that would need effort to move into Key4Hep
 - e.g. MPI support; full utilization of multithreading support; many others
- <u>Significant US expertise</u> in core SW that will have broad impact on Higgs Factory simulation, digitization, reconstruction

Analysis Software

- Existing FCCAnalysis tools are based on ROOT's RDataFrame (python steering with C++ routines for on-the-fly calculations)
- US (IRIS-HEP, FNAL) has led development of "python ecosystem" tools for LHC physics analysis
 - Increasingly popular with LHC users, Compatible with existing analysis facilities at FNAL, UChicago, others
- <u>HSF-India project</u> to add support (schema) for EDM4hep in coffea (Prayag Yadav, Hyderabad)

Analysis Software

• New schema works well, and has competitive (possibly better) performance than RDataFrame-based analysis tools

Computing Resources

From shared AIM/TDAQ/PS&C parallel session, as well as plenary session on simulation, it is clear there is a need for computing resources that US users can access for detector design/optimization studies.

• CPU and GPU for compute, shared/globally accessible storage for collaborative efforts

Short-term plans:

- PS&C will request time on HPCs (e.g. Perlmutter) for HFCC work
- Some institutional clusters exist and may be useful for specific tasks
- "Analysis Facility" model at LHC has been extremely successful, consider investing in a shared facility for US HFCC users

Physics Support

Clear demand for documentation and training resources:

- Reduce the barrier to entry for simulation, analysis studies
- Expand/strengthen community of FCC analyzers in the US

Together with some "strategic" investments to provide shared storage/data access and open up access to opportunistic computing resources (HPC, OSG/Path), investing some dedicated effort in this area would likely have the largest impact to enable the US community to grow participation in HF

We will soon have a funding proposal, following up on our request at Stony Brook

Proposed Workshop / Training in March at Princeton

"Software & Computing: From LHC to Future Colliders", (co-) sponsored by IRIS-HEP

Details to be discussed; possible goals for questions to answer:

Needs:

US community needs in terms of software and computing for Future Collider studies

• Resources:

Are there opportunities for the future collider effort to align with and/or leverage existing S&C projects (HEP-CCE, IRIS-HEP, etc.)?

What similar collaborations are possible with CERN and other international efforts?

• Near term goals:

What concrete things could be accomplished over the next 12 months?

• An associated training event could cover modern software tools, Key4Hep, etc.