US HFCC: AI, Integrated Detector Concepts, & Microelectronics

L2 : Julia Gonski, Jim Hirschauer L3 : Tim Andeen, Liza Brost, Jennet Dickinson, Loukas Gouskos

HFCC Detector Workshop: Day 2

This workshop

AIM

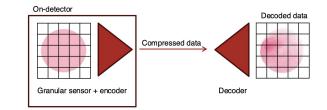
Introduction	James Hirschauer et al. 🥝	
53/4-4002 - Toluca, SLAC	10:45 - 10:55	
Topics & Plans: Al	Jennet Dickinson 🥝	
53/4-4002 - Toluca, SLAC	10:55 - 11:15	
Topics & Plans: Microelectronics	Tim Andeen 🥝	
53/4-4002 - Toluca, SLAC	11:15 - 11:35	
Topics & Plans: Integrated Detector Concepts	Liza Brost et al. 🥝	
53/4-4002 - Toluca, SLAC	11:35 - 11:55	
Brainstorming/Discussion		
53/4-4002 - Toluca, SLAC	11:55 - 12:30	

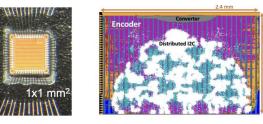
AIM + TDAQ + S&C

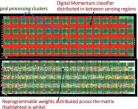
Detector Challenge

	Overview	Ø
	53/4-4002 - Toluca, SLAC	14:00 - 14:05
Γ	Cross-Cutting Topic: Detector Design/Optimization Challenge	
	53/4-4002 - Toluca, SLAC	14:05 - 14:50
5	Cross-Cutting Topic: AI for HF	
	53/4-4002 - Toluca, SLAC	14:50 - 15:20
		14.50 - 15.20
	Miscellaneous/AOB	
	53/4-4002 - Toluca, SLAC	15:20 - 15:30

Integrated Detector Concepts: Detector Challenge


- Organized/self-contained sandbox for detector concepts and optimization
 - Enable community to explore new ideas for contribution to international efforts
 - $\circ \rightarrow$ Collaboration among TDAQ, S&C, and AIM; involves & benefits all subsystem L2 areas
- What we need:
 - Simulations: full detector (Delphes, Geant), subsystem digital level
 - <u>Resources:</u> 0.5 FTE of student/postdoc to lead simulation development and compilation (with senior advising)
- Next steps:
 - Organizing committee to finalize physics targets, compile simulation readiness & full Madgraph→plot pipeline




Using AI/ML on-detector

(Jennet)

- Connection to microelectronics, TDAQ
- Using AI/ML for detector design/optimization
 - For a specific subsystem (e.g. tracker, calorimeter)
 - For the detector as a whole (connection to integration)
- Key challenges & priorities:
 - Subsystem-specific algorithms and DAQ studies
 - Power management, large data volumes
 - Analog computing (blue-sky)
 - Engagement with other communities: ASCR, EE, NP, industry
- <u>Resources</u>:
 - ASIC designs: engineering/physicist hours, M&S for tapeouts
 - Simulation: organized/curated central repository of digital level simulation
 - Test beams (for radiation characterization)

 $< 0.2 \text{ mm}^2$

Microelectronics

- US expertise: Rad tolerance, low-power, low-noise, low-latency, cryogenic, AI/ML hardware
- Current priority R&D areas for HEP:

Research Area	Ongoing and future effort
AI/ML in ASICs, intelligence on detector	UT Austin, U Chicago, Cornell, UIC, UIUC, JHU, Kansas, ANL, LBNL, BNL, FNAL, SLAC, ORNL
Common IP for future MOSFET process nodes (28 nm e.g.)	LBNL, BNL, FNAL
3D / hybrid integration	USSC, LBNL, BNL, FNAL
Silicon photonics	ANL, LBNL, FNAL
High data density (including fast optical links	UPenn, ANL, LBNL, FNAL
Novel materials / devices	LBNL, FNAL
Novel design tools : open source, automated, AI/ML enhanced	UPenn, LBNL, BNL, FNAL, HEPIC
MAPS, 4D/5D sensor + ASICs, electronics for precision timing	
(now covered in Tracker L2 area)	U Michigan, ND, Oregon, UCSC, ANL, LBNL, BNL, FNAL, SLAC, ORNL

- HF would benefit most from investment in two high impact areas:
 - AI/ML in on-detector electronics to optimize physics precision, power, data volume, material
 - **HEP-accessible 3D/hybrid integration**: further minimize power and material (for on-detector intelligence e.g.) complementary to MAPS
- Why should HF invest? **On-detector AI/ML** is HF-specific, **HEP-accessible 3D integration** will otherwise come too late (or not at all)

Conclusions

- AIM covers essential and cross-cutting topics in HF detector R&D: crucial to maintain involvement **across subsystem L2 areas**
- <u>Priority #1:</u> Proposed curation and organization of simulations via high-priority "detector challenge" will:
 - Facilitate R&D into new techniques including AI/ML
 - Maintain close coupling of all subsystems; propagation of subsystem R&D up to full detector concepts
- Al and microelectronics are cutting-edge technologies that can engage other funding sources and elevate HF detector designs to today's state-of-the-art
 - Build on existing US leadership
 - Priority #2: Al-in-ASIC
- Drafting of EPPSU Al/microelectronics section underway