Low Power on-Detector Computing

Haider Abidi Dec 19th, 2024

Introduction

- Modern algorithms, especially AI/ML ones, are requiring ever increasing computation power
- Makes it prohibitive to include algorithms on the detector to make complex decisions

Trend of increasing computing needs for alogrithms Link

More computing -> more heat -> more cooling required-> more material -> lower performance

Analog computing

- Analog computing can provide 10-100x higher computational power per watt
 - In-memory implementation are radiation hard •
- run complex algorithms to perform tasks
 - Matrix multiplication for AI/ML algorithms are trivial current adders

(c) Solver of regression problems

(b) Solver of linear systems (Ax = b)

(d) Analogue CAM circuit

Different types of computation can be implemented with analog techniques link

Opens a way to include a computational platform on the detector, even close the interaction point to

In memory circuits are inherently radiation hard as they use amorphous states to store info

Next Steps

•

- R&D

 - Similar expression of interests from US & European institutes
 - Wide range of ideas on how to incorporate low-power computation techniques on detectors
 - Planning meeting early January to figure out synergies and collaborations!

Continue collaborating with industrial partners to leverage their commercial technologies for our detector

Develop benchmarks to test implementation and performance in realistic detector conditions

