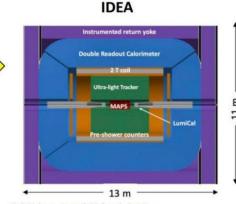
ATLAS muon detector upgrade TDAQ and Electronics R&D ideas

UMassAmherst

Thiago Costa de Paiva


US Higgs Factory Planning Meeting

December 19th, 2024

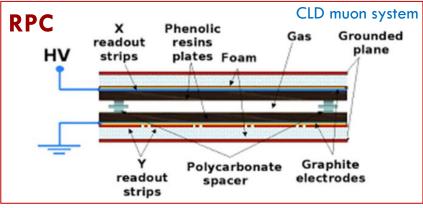
Detector Concepts for FCC-ee

CLD

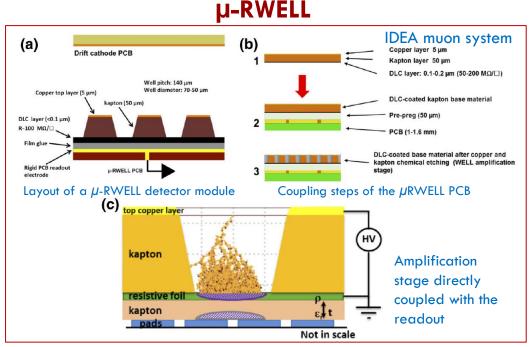
- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker;
- CALICE-like calorimetry;
- Large coil, muon system RPC
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system µ-RWELL
- Very active community
 - Prototype designs, test beam campaigns, ...

Link with more details



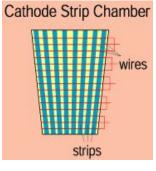
- A design in its infancy
- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- · Coil inside same cryostat as LAr, outside ECAL
- Muon system. Open technology choice
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

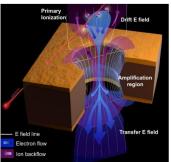

• ...

FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4

Proposed Detectors

- Large RPC detectors are used in LHC experiments
 - Fast timing (a few ns) trigger detector
 - Provide 2nd coordinator with precision (a few cm)
 - Limited rate capability (at an order of ~102 Hz/cm2)
- Challenges
 - Use Eco-friendly gas
 - Need good angular resolution to match ID muon tracks
 - Limited spatial resolution for detection of LLP
 - Reliable operations, efficiency, rate capabilities

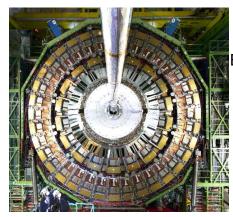


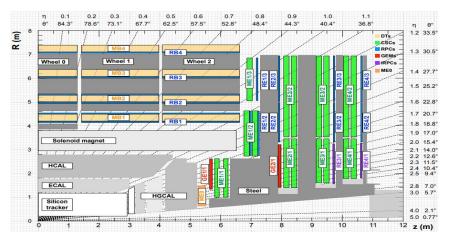

- Challenges
 - Not yet used in experiments; Needs intensive R&D
 - Large number of channels 5 Million for the IDEA proposal
 - Limited spatial resolution -- < 400 mm for the IDEA proposal

US Muon Expertise - CMS

UMassAmherst

CMS precision endcap muon detectors: Cathode Strip & Triple-GEM Chambers GEM




Muon subsystem	Cathode strip chamber (CSC)	Gas electron multiplier (GEM)
$ \eta $ range	0.9-2.4	1.55-2.18
Number of chambers	540	72
Number of layers/chamber	6	2
Surface area of all layers	$7000 \mathrm{m}^2$	$60\mathrm{m}^2$
Number of channels	266 112 (strips) 210 816 (wire groups)	442 368
Spatial resolution	50–140 μm	$100 \mu m$
Time resolution	3 ns	<10 ns

GE2/1 GEM Installation

Endcap CSC disk Built by US

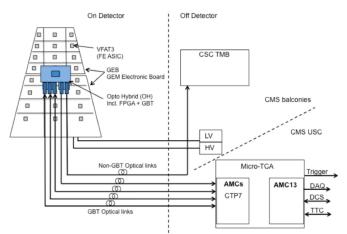
US Muon Electronics - CMS

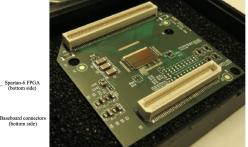
- Copper

— Fiber

ME1/1 after LS1

CSC


LVDB7

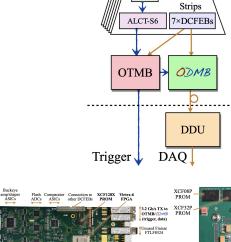

Wires

42×

AFEBs

GEM

CSC Two HD50 connectors to ODM8

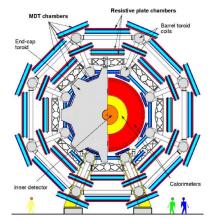

Seven HD50 connectors to DCFEBs

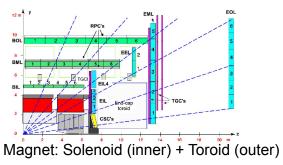
Coupling to

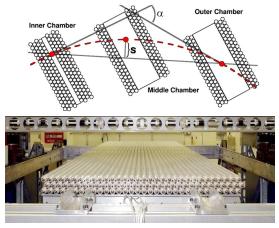
trips, spark

OTBM baseboard

30 cm



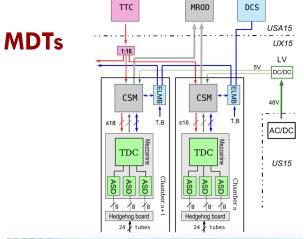

Spartan-6 FPGA (bottom side)


US Muon Expertise - ATLAS

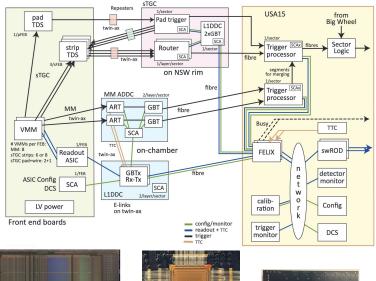
UMassAmherst

ATLAS precision muon detector: Monitored Drift Tube (MDT) chambers Drift gas: Ar:CO2 (93:7), p=3 bar, max drift time 750 ns

Muon MDT chamber, tube d=3 cm, 80μ m/wire

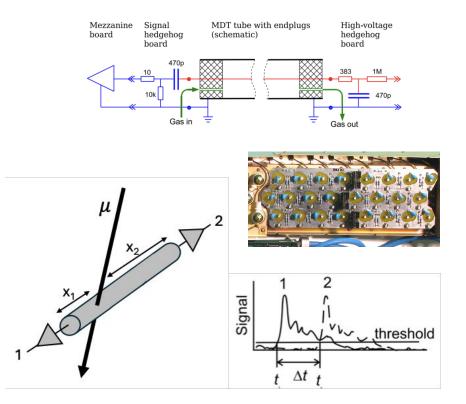


MDT chamber construction at UM

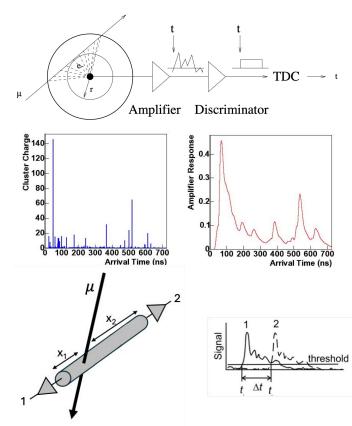

Big Wheel (endcap) built in the US, installation in ATLAS

US Muon Electronics - ATLAS

MM and sTGC for the NSW

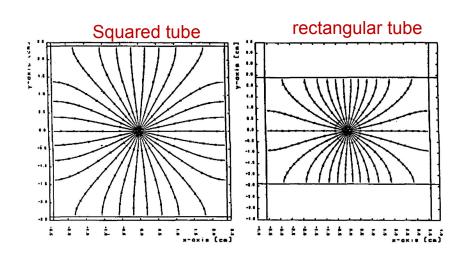


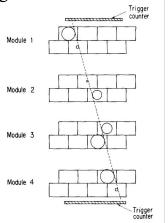
Drift Tube Electronics


- Proposal for muon detector including drift tubes for tracking & trigger
 - Simple, robust, and inexpensive suitable for large scale construction
 - Capable of achieving < 200 mm single wire resolution for all muon incident angles
- Goals for electronics requires R&D
 - Capable of 3D tracking achieving < 200 mm single wire resolution and few cm in 2nd coord (along tube)
 - Capable of trigger: determining t₀ with few ns time resolution, determine BCID
- Detector R&D to accompanied by additional electronics R&D including
 - Choice of chamber drift gas
 - Alternative geometries such as a squared drift tube detector

Drift Tube Electronics R&D

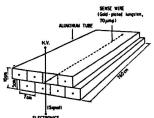
- Study extensions of current drift tubes
 - 3D tracking, including the non-precision 2nd coordinate (along the tube direction)
 - Trigger timing requirements
- Investigate how to read out signal from both ends (currently only one is used) and extract position from time difference
 - Study signals including in simulation
 - Design and build prototype new electronics hedgehog card


Drift Tube Electronics R&D



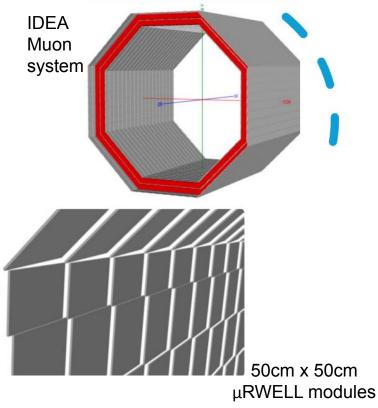
- Investigate new low-power front-end electronics with precise timing resolution
 - Interesting to explore low-power digital TDC designs with sub-200ps measurement resolution
 - Improved position and timing resolution for tracking and triggering
 - Propagation in tube about 0.78 x speed of light
 - Current MDT TDC resolution 0.78ns corresponds to about 18cm precision
 - Sub-200ps is key to achieving few cm precision
- Synergistic with broader interest in electronics for gaseous detectors
 - DRD1 and DRD7

Electronics for Square Drift Tubes


- Study signals from alternative geometries (e.g. square tube) and investigate changes in the electronics requirements using simulations
- Also study signals from alternative drift gases

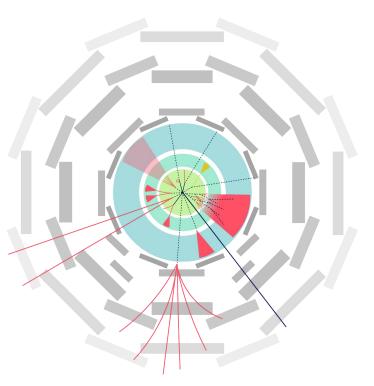
Y. Asano et al NIM A259 (1987) 430

Cosmic ray tests of 7.6 m drift-tube counters and the readout electronics system of the VENUS muon detector



µ-RWELL Electronics R&D

- A modern micro-pattern gas detector (MPGD) with single amplification stage
 - Currently proposed by IDEA experiment for muon system
- Several R&D topics in the US
 - Chamber production capabilities in the US
 - Studies of gas mixtures
- Electronics essential for success of R&D
 - Interesting to explore needs and interest in US
 - Overlaps with past experience


Connection to TDAQ R&D

- Traditional multi-layered triggered architecture
 - Efficient data reduction, may involve multiple subsystems, synchronized data processing, progressive filtering, centralized decision
- Self-trigger capabilities
 - multi-layer detection, trajectory reconstruction, flexible, adaptable, reduced latency, less complex infrastructure, data reduction at source
- Triggerless "streaming" mode
 - Simpler infrastructure, comprehensive data, sophisticated offline algorithms, no hardware latency
- Other remarks
 - Real time decision, scalable, versatile, comprehensive
 - New technologies? Machine Learning, adaptive algorithms, etc

Expanding Possible Signatures

- New detector opens up possibilities for exotic signatures which can be difficult to trigger on and reconstruction
 - Long-lived particle decays with non-pointing signatures
 - Slow moving or highly-ionizing particles with different timing
 - High muon multiplicity signals
- New electronics could help improve sensitivity, for example
 - Charge measurements in addition to time
 - Multi-thresholds to distinguish pileup
 - Flexible design

from H. Russell

Conclusions

- Electronics are a crucial part of the design of the muon detectors to achieve goals of high resolution and fast measurements for tracking and trigger
- Focusing initial Muon Electronics R&D in a few areas
 - Simulations to characterize the signals and the electronics to accompany the detector R&D
 - Different geometries
 - Alternative drift gas choices
 - Design and prototype for dual-sided readout of drift tubes
 - Study possibilities for low-power high precision timing
 - Investigate trigger and DAQ architectures possible with front-end design
- Building up the R&D collaborations, and contribute to the detector concept design
 - Harvard, U Michigan, and UMass Amherst in the US, together with MPI
 - Discussing with other groups about joining effort U. Wisconsin