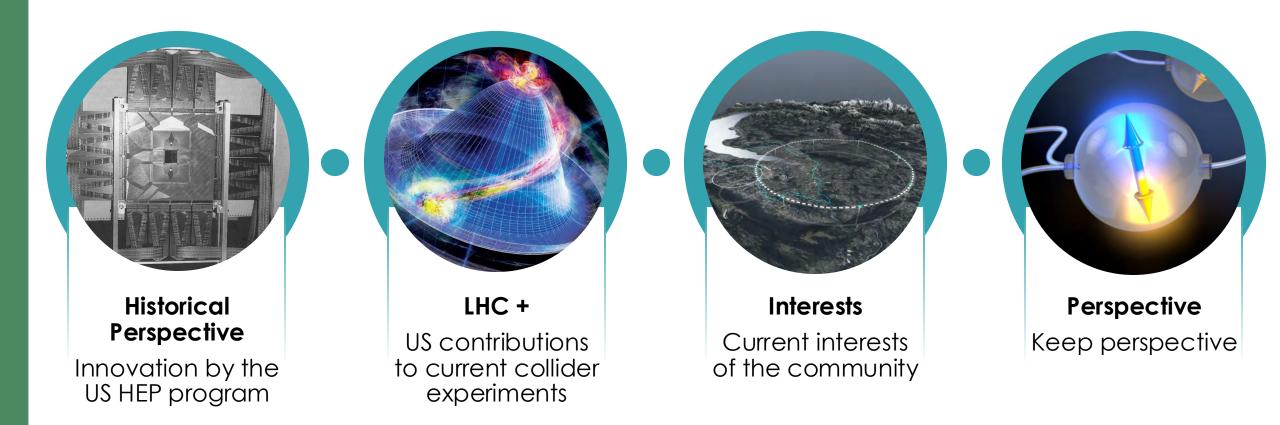
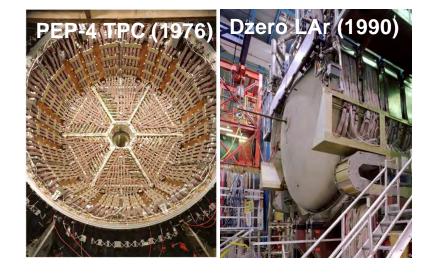


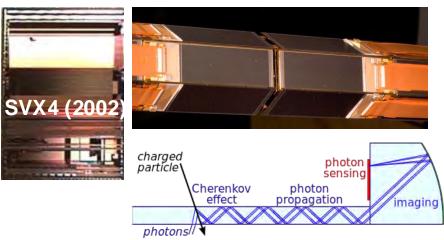
Potential U.S. Detector scope as it relates to a Higgs Factory


US Higgs Factory Planning Meeting SLAC December 18, 2024

Marcel Demarteau demarteau@ornl.gov With many thanks to Jon Kotcher, Mike Tuts, Steve Nahn, Anders Rydt, all L2 and L3 coordinators and many more

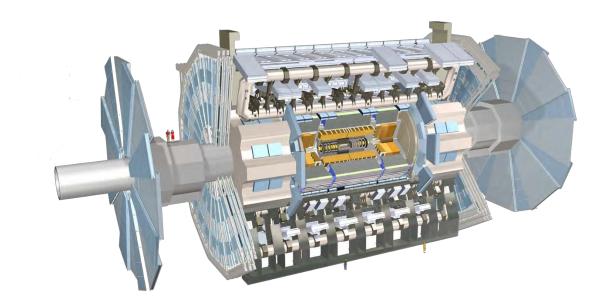
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

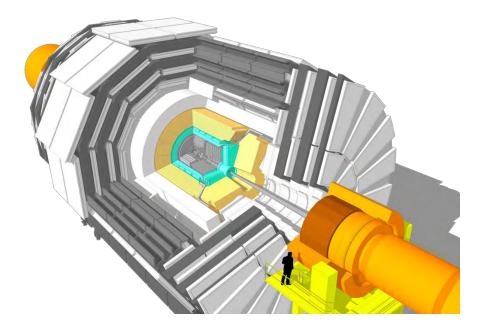

Outline: US Contributions



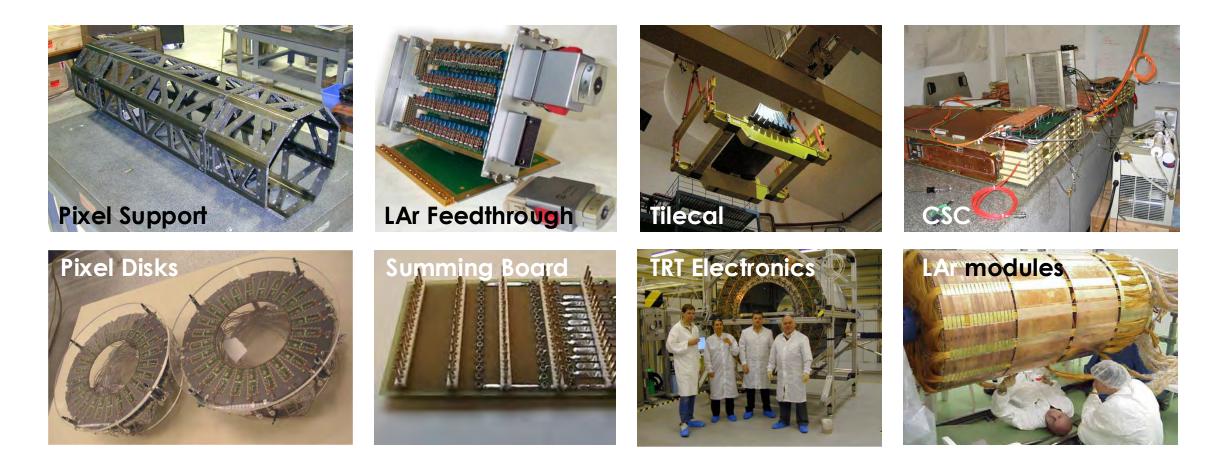
• Apologies for incompleteness given limited time.

A Bit of History


- The US has a remarkable legacy in the development and advancement of detector technologies for high energy physics.
 - Invention of the Time Projection Chamber
 - Advancing and scaling liquid argon calorimetry
 - Low-noise electronics
 - Silicon strip detectors
 - Detection Internal Reflected Cherenkov light
 - Low-mass silicon structures
 - Track trigger
 - Fiber Tracker
 - Deployment of Visible Light Photon Counters
 - LGAD detectors
 - Digital Calorimetry

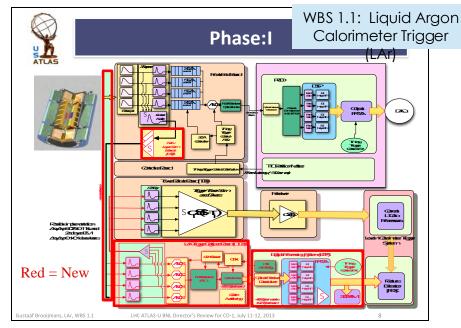


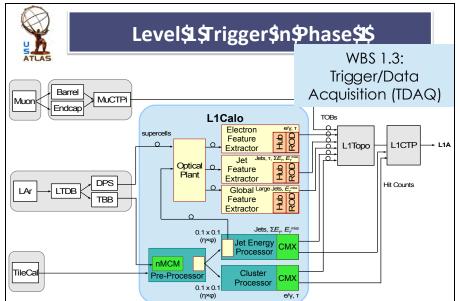
The LHC Experiments

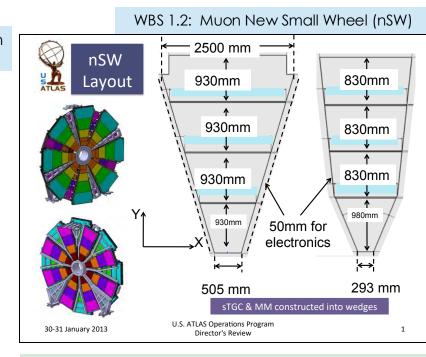

• The US had very significant scope for the construction of the two multipurpose LHC experiments, ATLAS and CMS.

ATLAS Phase-0

• Pixel tracker, Transition Radiation Tracker, LAr calorimeter, Tile calorimeter, Cathode Strip Chambers,


ATLAS Phase-0: Cost


DOE contributions and cost towards original ATLAS experiment


Project WBS Item	Budgeted Cost of Work Performed (through CD-4A)				
1.1 Silicon Subsystem	\$23,937.9k	- 3			
1.2 TRT Subsystem	\$11,878.3k				
1.3 LAr Calorimeter Subsystem	\$47,522.3k				
1.4 Tile Calorimeter Subsystem	\$11,552.3k				
1.5 Muon Spectrometer Subsystem	\$30,185.7k				
1.6 Trigger/DAQ Subsystem	\$5,170.6k				
1.7 Common Projects	\$15,313.5k				
1.8 Education Outreach	\$135.2k				
1.9 Project Management	\$8,380.2k				
1.10 Technical Coordination	\$3,095.3k				
TOTAL U.S. ATLAS Project	\$157,171.3k Date: 3	0 Se			

DOE Total contribution was \$250M (ATLAS + CMS) NSF additional contribution of \$81M (ATLAS + CMS) Date: 30 Sept. 2005 CD-4a Closeout Report

ATLAS Phase-1: Scope

✤ US Focus:

- Increased granularity and functionality in the Liquid Argon Calorimeter Level 1 trigger.
- Forward Muon (New Small Wheel) front-end readout, trigger, and alignment systems.
- Use of fine-granularity LAr data in the Level 1 Calorimeter trigger, and overall readout system enhancement (TDAQ).

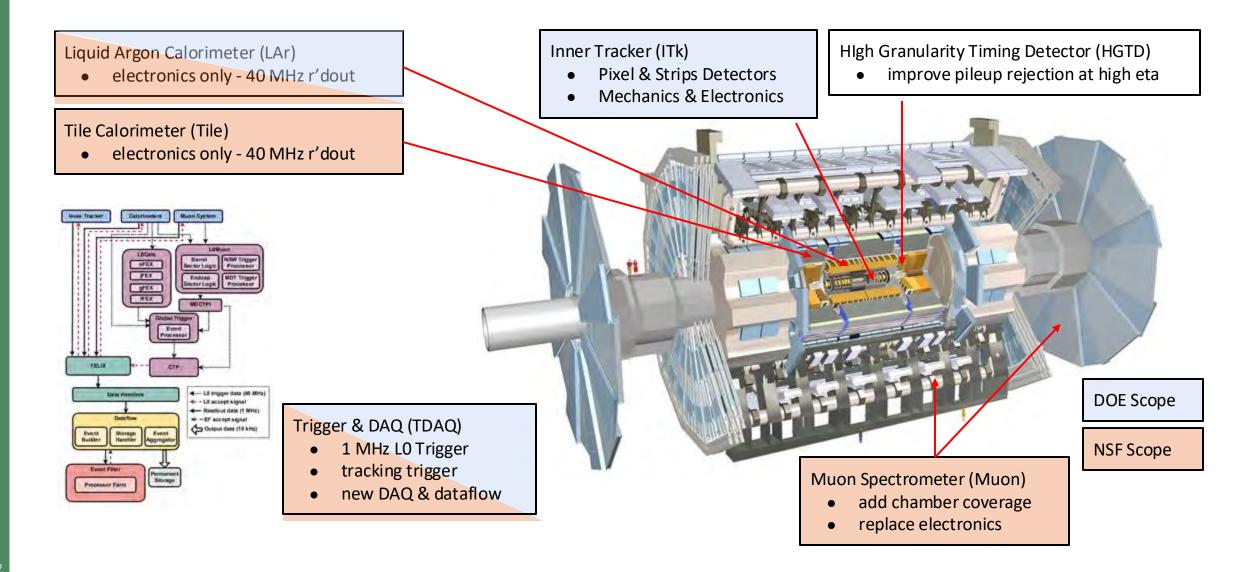
ATLAS Phase-1: Scope

- 1.1 Liquid Argon Calorimeter Trigger Readout (LAr)
 - 1.1.1 Baseplanes
 - 1.1.2 Layer Sum Boards
 - 1.1.3 Liquid Argon Trigger Digitizer Boards
 - 1.1.4 Back-End Electronics
- 1.2 Muon New Small Wheel (nSW)
 - 1.2.1 VMM Chip
 - 1.2.2 Front End Card
 - 1.2.3 ART Data Driver Card
 - 1.2.4 MM Trigger Processor
 - 1.2.6 nSW Alignment
 - 1.2.7 Trigger Data Serializer
- 1.3 Trigger/Data Acquisition (TDAQ)
 - 1.3.1 Algorithm Firmware
 - 1.3.2 FEX ATCA Hub
 - 1.3.3 FEX Fiber Plant
 - 1.3.4 gFEX System
 - 1.3.5 FELIX Firmware
- 1.4 Project Management

nSW is funded by DOE only. Funding for LAr and TDAQ is split between DOE & NSF.

Deliverables are at Level 3 or below, and are uniquely assigned to NSF or DOE. Control accounts, and reporting, are at Level 3.

ATLAS Phase-1: Cost

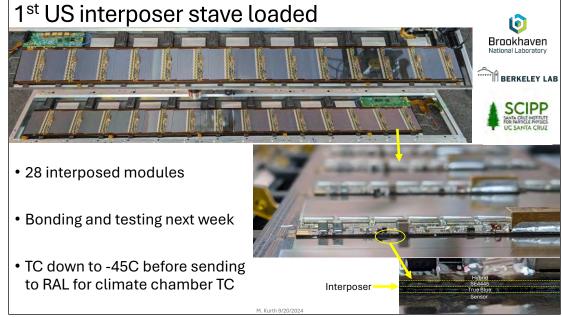

	DOE				NSF							
US ATLAS Phase I Upgrade, AYk\$												
DOE	Total FY14	FY15	FY16	FY17	FY18	тот	Total FY14	FY15	FY16	FY17	FY18	тот
LAr nSW	1,802 1,191	1,536 2,421	1,603 3,684	1,503 3,511	134 13	6,873 10,949	586	1,435	2,178	1,694	67	5,960
TDAQ PM	378 799	1,174 699	1,444 619	1,089 592	63 521	4,149 3,732	- 55	- 605	- 362	- 639	- 50	- 1,711
Base Estimate Subtotal Level 2 Project Contingency	4,170	5,830 2,229	7,349 1,941	6,695 1,540	731 129	25,703 5,839	119 760	213 2,253	219 2,759	226 2,558	233 349	1,009 8,680
Global Risk-Based Contingency LHC ATLAS-U Total	- 4,170	325 8,383	735 10,025	564 8,799	85 945	1,708 33,250	-	750 125	641 282	617 216	56 33	2,065 655
Fractional Contingency	-	0.44	0.36	0.31	0.29	0.29	760 -	3,128 0.39	3,682 0.33	3,392 0.33	437 0.25	11,400 0.31
DOE Guidance	6,250	7,500	9,500	8,500	-	33,250	2,400	2,850	3,200	2,750	200	11,400
Guidance + Carryover Balance/Carryover	6,822 2,652	10,152 1,769	11,269 1,244	9,744 945	945 -	33,250 -	2,400 1,640	4,490 1,362	4,562 880	3,630 238	438	11,400 -

• Total DOE+NSF: \$44.65M

ATLAS Phase-1: Labor


		Total FTES: 123 DOE + 47			
60.00 50.00 40.00 30.00 20.00 10.00					NSF = 170 Tot
0.00	FY14	FY15	FY16	F¥17	FY18
MGMT (Act. through 4/2014)	1.07				
ENGR (Act. through 4/2014)	7.01				
- U-Admin		0.50	0.50	0.50	0.25
Proj. Mgmt	0.75	1.40	1.40	1.40	1.18
U-Stu	0.56	1.40	0.61	0.40	0.04
U-Postdoc	0.35	0.58	0.36		
Inst-Phy	0.47	0.73	0.80	0.47	0.03
Postdoc	1.70	5.25	6.45	4.05	0.12
U-Eng	0.35	0.72	0.38	0.34	0.01
■ U-Phy	3.83	5.23	4.04	3.43	1.30
Physicist	0.14	0.25	0.23	0.21	1 1 1 1 1 1 1 1 1 1 1
Engineer	6.82	19.23	18.59	13.09	1.01
Technician	2.52	6.26	9.05	6.74	0.73
Student	3,43	4.21	4,98	2.84	0.01
Designer	0.48	1.03	1.19	1.10	0,16
Admin	0.65	1.30	1.30	1.30	1.10

ATLAS Phase-II: Scope



ATLAS Phase-II: DOE Cost

WBS	Total
Deliverables	
6.01 Pixel	34,921
6.02 Strips	48 <i>,</i> 055
6.03 Global Mechanics	17,459
6.04 LAr	6,804
6.07 Data Handling/DAQ	14,188
6.09 Common Costs	3,370
6.10 PMO	15,883
Total Deliverable Base Cost	140,680
Total Deliverable CTG	74,838
Contingency on Deliverables	
MC Contingency (89% CL)	31,677
Top-Down (PM) Contingency	31,677
Fractional Contingency	0.423
Total Deliverable Cost	172,357
Install. & Integ. (I&I)	
6.11 Inst. & Integ. (I&I)	17,418
Contingency on I&I (30%)	5,225
Total I&I Cost	22,643
Total Project Cost (Deliv. + I&I)	195,000
Funding/Carryover	Total
DOE Funding (Deliv. + I&I)	200,00
Guidance + Carryover	-
Balance/Carryover	-

TPC (DOE): \$200M

ATLAS Phase-II: NSF Cost and Institutions

Task (WBS)	Institution
LAr front end electronics, ADC ASIC, optical chips	Columbia, SMU, UT Austin
LAr front end-board	Columbia, Pittsburgh
LAr Back-End Electronics	Columbia, NYU, SMU, Stony Brook, Arizona
TileCal Main Board	Chicago
TileCal ELMB2 Motherboard	MSU
TileCal LVPS	NIU, UT Arlington
Muon Monitored Drift Tubes, sMDT	MSU, Michigan
Muon TDC ASIC	Michigan
Muon Chamber Service Module	Michigan
Muon LOMDT trigger	BU, UC Irvine, UMass Amherst
Trigger Level 0 Calorimeter Trigger System Optical Plant	MSU
Trigger Global Event processor Firmware and Algorithms	Indiana, MSU, Chicago, Oregon, Pittsburgh, SMU, Stanford
Trigger Event Filter Tracking	NIU, Arizona, UC Irvine, Chicago, UIUC, Penn

Effort: On-project (technical) 210 FTE-Years; Uncosted scientific labor (off project) 77 FTE-Years Cost (AYk\$) TPC: \$82,850 (includes contingency)

ATLAS To Date

- The U.S. has made, and continues to make, substantial and unique contributions to the ATLAS detector.
- Approximately ~ 20% of the Ph.D. physicists are from the U.S 14% on the DOE HEP side.
- The U.S. holds ~ 30% of the Level 1, 2 & 3 leadership positions on the International ATLAS HL-LHC upgrade.
- Total contributions: \$151.2M + \$33.3M + \$200M (DOE) \$(share of \$81M) + \$11.4M + \$82.9M (NSF)

CMS Phase-0

• Pixel and strip tracker, calorimeter (HB, HO, HE and HF), muons, trigger, electronics, readout,

First time full silicon tracker

DOE contribution to the construction of the original detector construction the same as for ATLAS

CMS Phase-I: Scope

- CMS Phase 1 Upgrade:
 - Pixel detector replacement
 - HCAL electronics upgrade

Ring 1

7 6

IRON+

HCAL -HB

L1-Trigger upgrade —

10 9 8

HCAL-HO

HCAL HE

MAGNET COIL

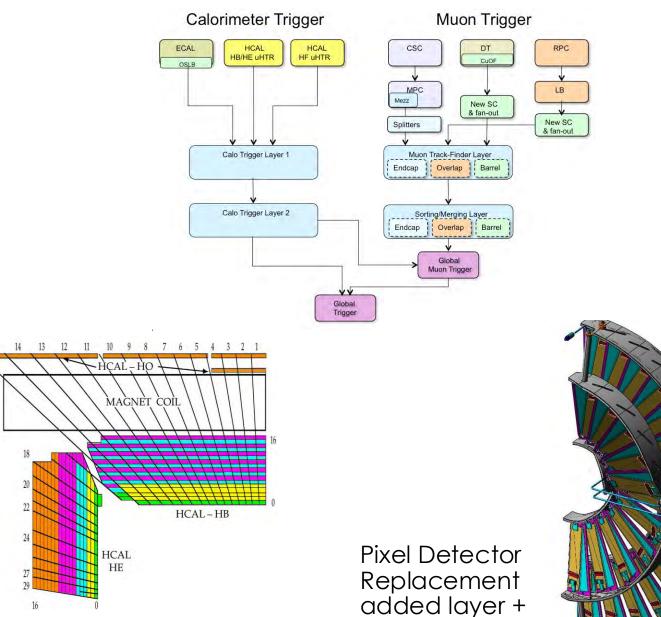
Ring 2

12 11

FEE

13

18FEE


2022

24

16

14

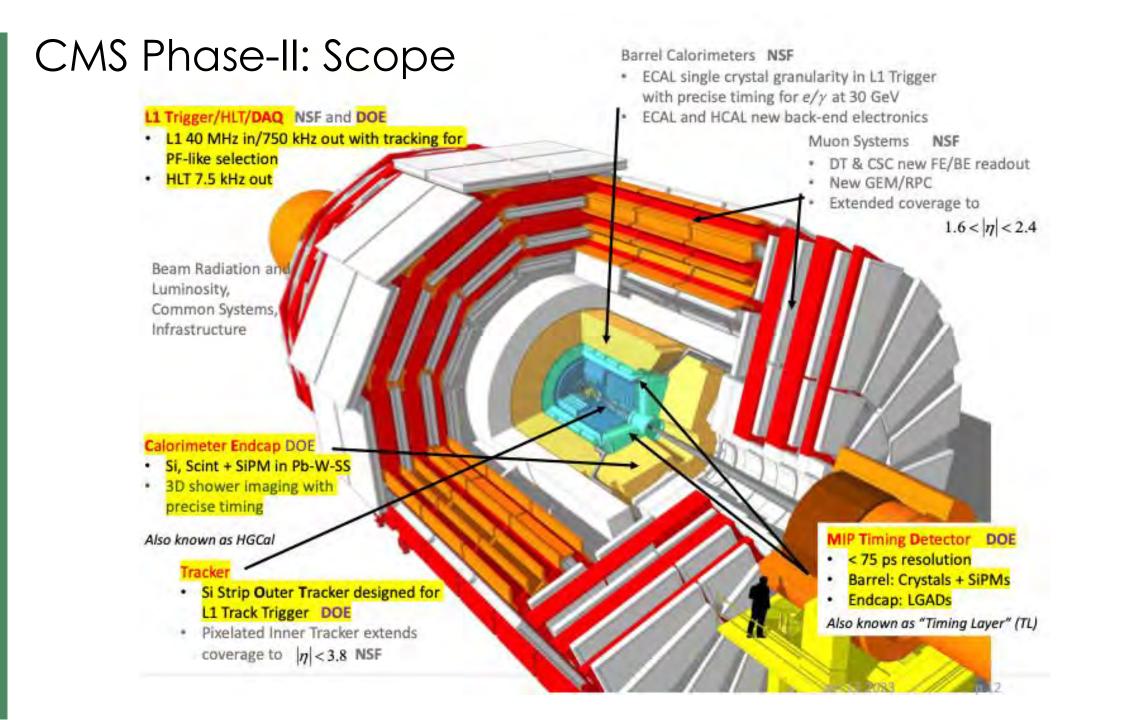
15

Longitudinal segmentation HB/HE and photodetectors

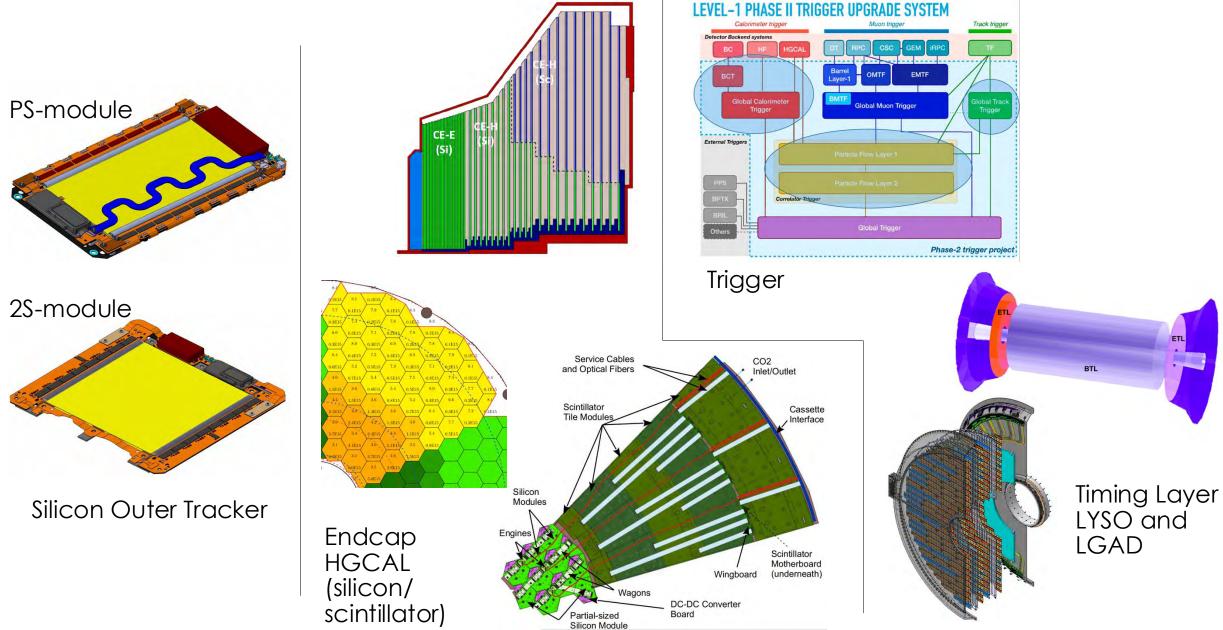
Ring 0

3 2 1

disks


CMS Phase-I: Labor (DOE)

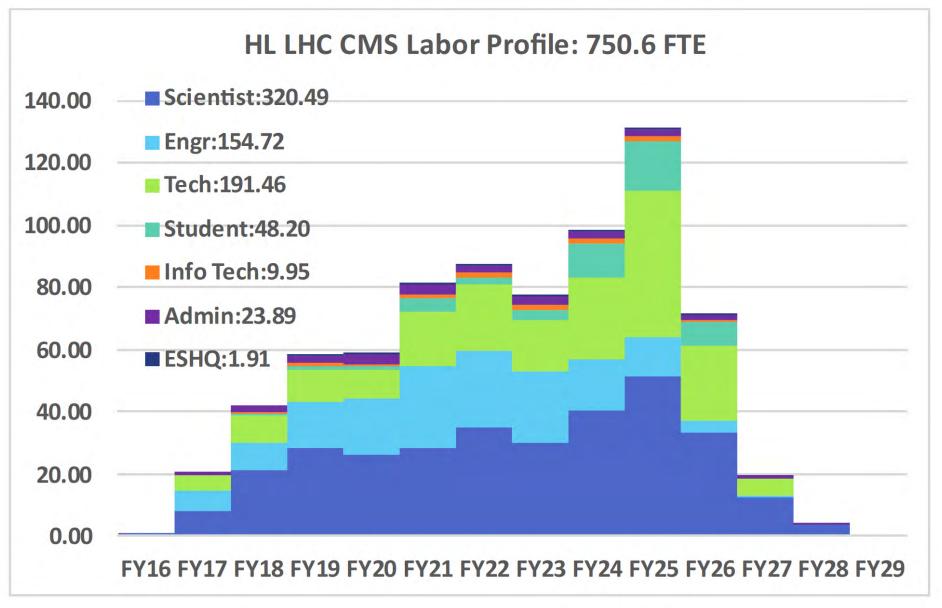
Phase 1: Actual Cost 40.8M (includes NSF and DOE) for about 21 Institutes,


100.00 Admin 90.00 Engineer 80.00 Technician 70.00 60.00 Computing 50.00 Contributed 40.00 30.00 Student 20.00 10.00 0.00

CMS Detector Upgrade Labor Profile:985.34 FTE

985 FTE over 6 years. 408 of them Contributed labor, 97 Student, 91 Admin, Rest Technical

CMS Phase-II: Scope



CMS Phase-II: Cost

	•						Total
Total cost (\$M)	Labor	Labor			Total BAC	Total EU	= AC + ETC
	BAC	EU	BAC	EU			+ EU + RC
402.1 Project Management	13,218	556	8,573	1,206	21,791	1,762	
402.2 Outer Tracker	23,680	2,821	26,827	2,945	50,507	5,766	
402.4 Calorimeter Endcap	28,996	4,782	27,805	5,705	56,801	10,487	200.00
402.6 Trigger and DAQ	6,310	912	5,225	756	11,535	1,669	
402.8 Timing Layer	10,850	2,230	10,111	1,510	20,961	3,739	1.1
TOTAL	83,054	11,301	78,540	12,123	161,594	23,424	200.00
Non-I&I							186.00
& (Integration and Installation)							14.00
Total							200.00

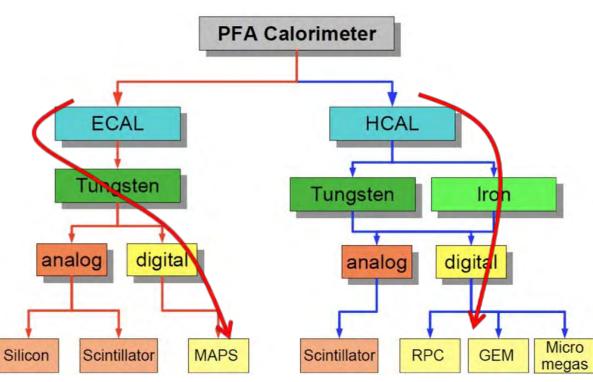
Total funding available (Jan. 2023): \$200M

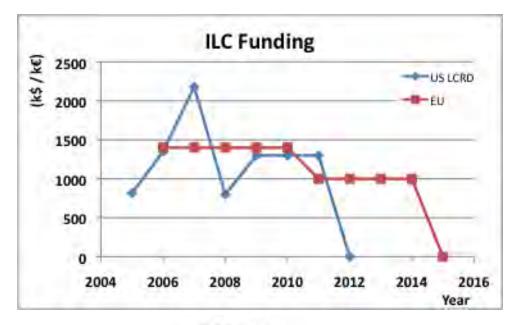
CMS Phase-II: Effort (DOE)

CMS Phase-II: NSF Cost and Institutions

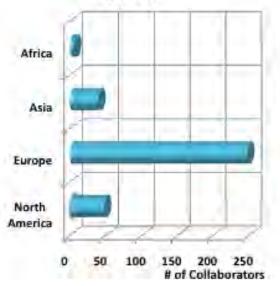
Task (WBS)	Institution (32)
Barrel Calorimeter - ECAL	Notre Dame, Northeastern, Minnesota, Virginia, and Wisconsin
Barrel Calorimeter – HCAL	Maryland and Notre Dame
Forward Muons - CSC	Northeastern, Rice, Texas A&M, The Ohio State U., and UCSB
Forward Muons – GEM	Boston, Florida Inst. of Tech., Rice, Texas A&M, UCLA, Wisconsin, and Wayne State
Forward Pixels - ROC & Sensors	Cornell, Kansas State, Purdue Northwest, U. of Colorado, UIC, UTK, Siena College, UC Riverside
Forward Pixels – Modules	Catholic U. of A. Nebraska, Boston, Florida Inst. of Tech., Purdue U., Purdue Northwest, The Ohio State U., UIC
Forward Pixels – Electronics	Boston, Cornell, Kansas State, Rice, Ohio State U., UIC, U. of Kansas, Vanderbilt
Forward Pixels - Mechanics and Integration	Cornell, Purdue U., UC Davis, Johns Hopkins, SUNY Buffalo,, U. of Puerto Rico
Trigger - Muon Trigger	Rice, Texas A&M, UCLA, U. of Florida
Trigger - Track Trigger	Boston, Cornell, Northeastern, Northwestern, Notre Dame, The Ohio State U., Rutgers, U. of Colorado, UTK

Effort: On-project (technical) ~200 FTE-Years; Uncosted scientific labor (off project) 170 FTE-Years Cost (AYk\$) TPC: \$88.00M (includes contingency)


Summary US Contributions to ATLAS and CMS Experiments

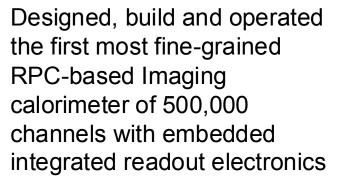

ATLAS + CMS	DOE (M\$)	NSF (M\$)	Total (M\$)	Institutions (DOE+NSF)
Original Construction	250	81	331	
Phase-I Upgrade	33.3 + ~30.8	11.4 + ~10	86	23 + 21
Phase-II Upgrade	200 + 200	82.9 + 88	571	37 + 51
Construction Total			988	
Operations per year	25 27	10 –11	35 - 38	

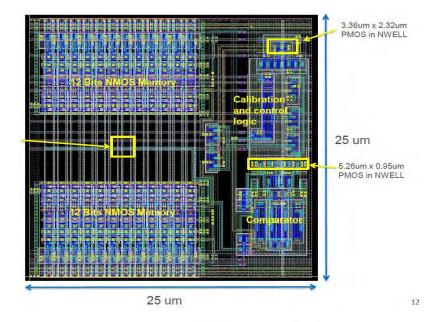
 Since the initial collaboration to today, the US contribution to PED is about \$1.7B (excluding contributions to LHCb and to the accelerator)

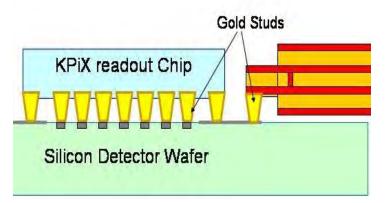

ILC Detector Contributions

- During 2004 2010 the US was also a major player in detector development for ILC detectors:
 - Luminosity, Energy, Polarization measurement
 - Vertex Detector and Tracking
 - Calorimetry and Particle ID

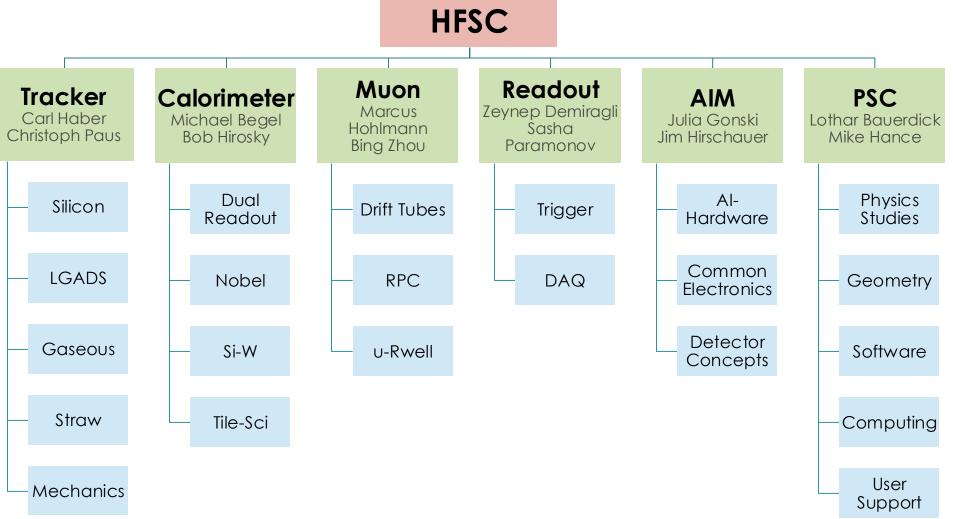
CALICE




Scope Elements



Pixel chip with individual bunch crossing time stamping (chronopix)



Silicon Strip Readout with 1k channels

Summary

- The U.S. has had **major roles** in the construction of the two multi-purpose LHC and ILC detectors spanning a large range of technologies.
- The U.S. holds ~ 30% of the Level 1, 2 & 3 leadership positions on the International LHC HL-LHC upgrade projects, commensurate with the US participation in the experiment.
- This reflects the **broad and well-recognized expertise** in the U.S., and its strong historical engagement in the experiment.
- The U.S. has in general **many leadership positions** in the LHC experiments, including spokespersons for CMS and upcoming ATLAS spokesperson.
- The anticipated level of commitment towards future detectors will be **on a par with the LHC commitments**.
- The L2/L3 groups are **identifying priority research areas** and forming research collaborations.

L2/L3 Structure

AIM: AI, Integration and Microelectronics PSC: Physics, Software & Computing

Some Observations

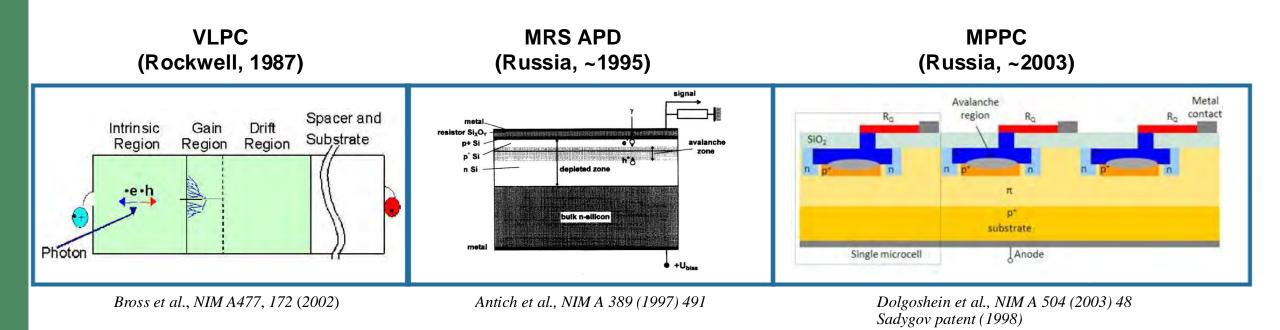
- The U.S. particle physics community has a history of developing novel detector concepts and has broad expertise.
- The U.S. experimental HEP workforce is formidable, and has been a trusted partner with CERN on the LHC. The investment to-date in the construction + upgrades of the two multi-purpose detectors are significant and help realize the physics program of the LHC.
- The community will continue to collaborate with the next proposed major research facility planned to be hosted in Europe by CERN with international participation, with the intent of strengthening the global scientific enterprise.
- The aim for a high precision and discovery machine will require **leadership**, **novel technologies and new ideas**.

Some Observations

- The U.S. particle physics community has a history of developing novel detector concepts and has broad expertise.
- The U.S. experimental HEP workforce is formidable, and has been a trusted partner with CERN on the LHC. The investment to-date in the construction + upgrades of the two multi-purpose detectors are significant and help realize the physics program of the LHC.
- The community will continue to collaborate with the next proposed major research facility planned to be hosted in Europe by CERN with international participation, with the intent of strengthening the global scientific enterprise.
- The aim for a high precision and discovery machine will require **leadership**, **novel technologies and new ideas**.

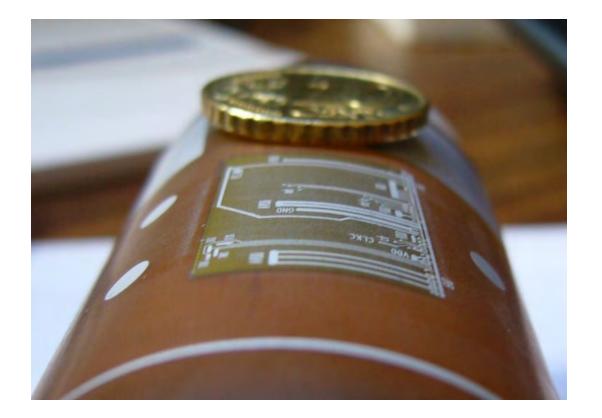
Some Observations


- The U.S. particle physics community has a history of developing novel detector concepts and has broad expertise.
- The U.S. experimental HEP workforce is formidable, and has been a trusted partner with CERN on the LHC. The investment to-date in the construction + upgrades of the two multi-purpose detectors are significant and help realize the physics program of the LHC.
- The community will continue to collaborate with the next proposed major research facility planned to be hosted in Europe by CERN with international participation, with the intent of strengthening the global scientific enterprise.
- The aim for a high precision and discovery machine will require **leadership**, **novel technologies and new ideas**.


• There is plenty of time to explore new ideas; think out of the box and **rethink current paradigms**.

Keep an Open Mind

• Let's continue to "bounce ideas" for **new detector technologies** to strengthen the case for **a** Higgs Factory; we will all benefit.


The Underpinning Of Scientific Progress

• From difficult beginnings (VLPC operated at 7K for Dzero scintillating fiber tracker) to being a workhorse for the field in a mere twenty years.

VLPC: Visible Light Photon Counter MRS: Metal- Resistor-Semiconductor MPPC: Multi-Pixel Photon Counter (SiPM)

Flex embedded sensors

Already more than a decade ago, PLUME, SERVIETTE and PLUMETTE collaboration investigated and succeeded at **embedding thin MAPS** sensors in Kapton flex

New fabrication and packaging technologies for CMOS pixel sensors are closing the gap between hybrid and monolithic

Conclusion

- The U.S. has the breadth, depth and intent for strong participation in the development of the experimental program of a future Higgs factory, resources permitting. That is the message to be conveyed to the ESG
- Currently, the priority is completing the HL-LHC detector upgrades and resources are currently dedicated to its completion.
- The community will continue to collaborate with the next proposed major research facility planned to be hosted in Europe by CERN with international participation, with the intent of strengthening the global scientific enterprise.

With many thanks to Jon Kotcher, Mike Tuts, Steve Nahn, Anders Rydt, Jim Brau, Andy White, all L2 and L3 coordinators and many more