

Detector Optimization and simulation/reco

Loukas Gouskos (Brown University) US Higgs Factory Planning, Dec 2024 SLAC

Detector Optimization and simulation/reco

Loukas Gouskos (Brown University)

US Higgs Factory Planning, Dec 2024 SLAC

Today's talk:

- → Current status, on-going work, next steps [algorithmic/SW side]
- \rightarrow Where US is making/can make impact
- \rightarrow Synergies between US L2/L3 groups

Disclaimer:

→ 10min-talk: High-level (avoid technicalities); Focus on key points/challenges

→ Small "bias" towards FCCee/IDEA [just because I'm directly involved]

Example physics case: $H \rightarrow ss$

Example physics case: $H \rightarrow ss$

- Higgs-vs-W,Z,continuum: σ_{mass}~O(MeV)
 - <u>Tracking</u>: σ_{pT}/pT~10⁻³ @ ~50GeV
 - <u>Calorimeter</u>: 30%/sqrt(E)

Bottom/charm vs. strange quark

- ◆ SIG: BR(H→ss)~10⁻⁴
- Higgs BKGs:
 - $BR(H \rightarrow bb) \sim 6 \times 10^{-1} BR(H \rightarrow cc) \sim 3 \times 10^{-2}$
- Light <u>Pixel</u>; 1st layer close to IP

u/d/g vs. strange quark: π-vs-K

• **PID** detectors

Loukas

• dN/dX, TOF, RICH? combination?

Broad set of requirements/challenges

2024 -

Algorithm front: Jet tagging

- Powerful detectors: only part of the story
- In parallel: Algorithms able to exploit the true potential of these detectors
- Current state-of-the-art: GNN/Transformer-based algorithms
 very similar across all experiments/detector concepts

PRD 101 056019 (2020) EPJ C 82 646 (2022)

Performance: Detector concepts

More recently: SiD e.g., b-tagging

D. Ntounis ECFA'24

Started for FCC/IDEA e.g., s-tagging

→ Systematic comparison b/w detector concepts (e.g., IDEA vs. SiD)
 → NB: Results based on FastSim (i.e., Delphes)

Loukas Gouskos

US Higgs factory planning (SLAC 2024)

(Sub)Detector optimization: PIXEL

PIX Layers: 3 vs. 4

Single-point resolution

Detector Optimization: PID

- Need PID over a very broad p_T range
 - ♦ H→ss: very relevant benchmark

Add refs

Detector Optimization: PID

Strange tagging

(At the ZH)

- → dN/dx: most of the gain
- → additional gain w/ TOF (30ps)
- →TOF (3ps): marginal gain
- → Still room for improvement (Ideal)

Detector Optimization: PID

Effort to further improve PID e.g., RICH (ARC)

S. Pezzulo ECFA 2024

Compact: \rightarrow Radius: 2.1m \rightarrow Length: 4.4 m

(At the ZH)

- → dN/dx: most of the gain
- → additional gain w/ TOF (30ps)
- →TOF (3ps): marginal gain
- → Still room for improvement (Ideal)

- \rightarrow Integrated for the CLD detector
- → 3σ π-vs-K up to ~45 GeV [studies in FullSim]
- → But: 10% reduction of TRK volume; Important?

$\mathbf{M} \text{ Impact on physics outcome (e.g., H} \rightarrow ss)$

Loukas Gouskos

Observable	Present value \pm error	FCC-ee	stat. FCC-ee syst.	Comment and leading exp. error	Observable	Present value \pm error	FCC-ee stat	FCC-ee syst.	Comment and leading exp. error
m _Z (keV)	91186700 ± 2200	4	100	From Z line shape scan Beam energy calibration	$A_{FB}^{pol,\tau}~(\times 10^4)$	1498 ± 49	0.15	<2	τ polarization asymmetry τ decay physics
$\Gamma_{\rm Z}$ (keV)	2495200 ± 2300	4	25	From Z line shape scan Beam energy calibration	τ lifetime (fs) τ mass (MeV)	290.3 ± 0.5 1776 86 ±0.12	0.001 0.004	0.04	Radial alignment
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration	τ leptonic ($\mu\nu_{\mu}\nu_{\tau}$) B.R. (%)	1770.00 ± 0.12 17.38 ±0.04	0.0001	0.003	e/ μ /hadron separation
$1/\alpha_{\text{QED}}(\text{m}_Z^2)(\times 10^3)$	128952 ± 14	3	Small	From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate	m _W (MeV)	80350 ± 15	0.25	0.3	From WW threshold scan Beam energy calibration
$\mathbf{R}^{\mathbf{Z}}_{\ell}$ (×10 ³)	20767 ± 25	0.06	0.2–1	Ratio of hadrons to leptons Acceptance for leptons	Γ_{W} (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(\times 10^4)$	1196 ± 30	0.1	0.4–1.6	From R_{ℓ}^Z above	$\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)$	1170 ± 420	3	Small	from R_{ℓ}^{W}
$\sigma_{\rm had}^0$ (×10 ³) (nb)	41541 ± 37	0.1	4	Peak hadronic cross section Luminosity measurement	$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections Luminosity measurement	$m_{top} (MeV/c^2)$	172740 ± 500	17 45	Small	From tī threshold scan QCD errors dominate
R_b (×10 ⁶)	216290 ± 660	0.3	< 60	Ratio of $b\bar{b}$ to hadrons Stat. extrapol. from SLD	$\lambda_{top}/\lambda_{top}^{SM}$	1410 ± 190 1.2 ± 0.3	45 0.10	Small	QCD errors dominate From tt threshold scan
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1–3	b-quark asymmetry at Z pole From jet charge	ttZ couplings	$\pm 30\%$	0.5-1.5%	Small	QCD errors dominate From $\sqrt{s} = 365 \text{GeV}$ run
		STAI							

Huge potential [δ(stat)]

Observable	Present value \pm error	FCC-e	sta	t. FCC-ee s	st. Comment and leading exp. error	Observable	Present value \pm error	FCC-ee stat	FCC-ee syst.	Comment and leading exp. error
m _Z (keV)	91186700 ± 2200	4	Γ	100	From Z line shape scan Beam energy calibration	$A_{FB}^{pol,\tau}~(\times 10^4)$	1498 ± 49	0.15	<2	τ polarization asymmetry
$\Gamma_{\rm Z}$ (keV)	2495200 ± 2300	4		25	From Z line shape scan	τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	Radial alignment
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2		2.4	from $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration	τ mass (MeV) τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	1776.86 ± 0.12 17.38 ± 0.04	0.004 0.0001	0.04 0.003	Momentum scale e/µ/hadron separation
$1/\alpha_{\rm QED}({\rm m}_Z^2)(\times 10^3)$	128952 ± 14	3		Small	From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate	m_W (MeV)	80350 ± 15	0.25	0.3	From WW threshold scan Beam energy calibration
$R^{\mathbf{Z}}_{\ell}$ (×10 ³)	20767 ± 25	0.06		0.2–1	Ratio of hadrons to leptons Acceptance for leptons	Γ_W (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_{\rm s}({\rm m}_Z^2)~(\times 10^4)$	1196 ± 30	0.1		0.4–1.6	From $R^{\mathbf{Z}}_{\ell}$ above	$\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)$	1170 ± 420	3	Small	from R_{ℓ}^{W}
$\sigma_{\rm had}^0$ (×10 ³) (nb)	41541 ± 37	0.1		4	Peak hadronic cross section Luminosity measurement	$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005		1	Z peak cross sections	$m_{top} (MeV/c^2)$	172740 ± 500	17	Small	From tt threshold scan QCD errors dominate
R_b (×10 ⁶)	216290 ± 660	0.3		< 60	Ratio of $b\bar{b}$ to hadrons Stat. extrapol. from SLD	$\Gamma_{\rm top} ({\rm MeV}/c^2)$ $\lambda_{\rm top}/\lambda_{\rm top}^{\rm SM}$	1410 ± 190 1.2 ± 0.3	45 0.10	Small Small	From tt threshold scan QCD errors dominate From tt threshold scan
$A_{FB}^{b}, 0 \; (\times 10^{4})$	992 ± 16	0.02		1–3	b-quark asymmetry at Z pole From jet charge	ttZ couplings	± 30%	0.5-1.5%	Small	QCD errors dominate From $\sqrt{s} = 365 \text{GeV}$ run
		stai	[5	syst						

Huge potential [δ(stat)] ...but big challenges [δ(syst)]

Observable	Present value \pm error	FCC-e	sta	t. FCC-ee s	/st	. Comment and leading exp. error	Observable	Present value \pm error	FCC-ee stat	FCC-ee syst.	Comment and leading exp. error
m _Z (keV)	91186700 ± 2200	4		100	Γ	From Z line shape scan Beam energy calibration	$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	τ polarization asymmetry
Γ _Z (keV)	2495200 ± 2300	4		25		From Z line shape scan Beam energy calibration	τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	Radial alignment
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2		2.4		from $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration	τ mass (MeV) τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	1776.86 ± 0.12 17.38 ± 0.04	0.004 0.0001	0.04 0.003	Momentum scale e/μ /hadron separation
$1/\alpha_{\text{QED}}(m_Z^2)(\times 10^3)$	128952 ± 14	3		Small	ľ	From $A_{FB}^{\mu\mu}$ off peak OED&EW errors dominate	m_W (MeV)	80350 ± 15	0.25	0.3	From WW threshold scan Beam energy calibration
R^{Z}_{ℓ} (×10 ³)	20767 ± 25	0.06		0.2–1		Ratio of hadrons to leptons Acceptance for leptons	$\Gamma_{\rm W}~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_s(m_Z^2) \ (\times 10^4)$	1196 ± 30	0.1		0.4–1.6		From R^{Z}_{ℓ} above	$\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)$	1170 ± 420	3	Small	from R^{W}_{ℓ}
$\sigma_{\rm had}^0$ (×10 ³) (nb)	41541 ± 37	0.1		4		Peak hadronic cross section Luminosity measurement	$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005		1		Z peak cross sections	$m_{top} (MeV/c^2)$	172740 ± 500	17	Small	From tt threshold scan QCD errors dominate
R _b (×10 ⁶)	216290 ± 660	0.3		< 60		Ratio of bb to hadrons	$\Gamma_{\rm top} ({\rm MeV/c^2})$	1410 ± 190 1 2 ± 0 3	45 0 10	Small	From tt threshold scan QCD errors dominate From tt threshold scan
$A_{FB}^{b}, 0 (\times 10^{4})$	992 ± 16	0.02		1–3		b-quark asymmetry at Z pole From jet charge	ttZ couplings	$\pm 30\%$	0.5-1.5%	Small	QCD errors dominate From $\sqrt{s} = 365 \text{ GeV run}$
		sta	t (syst		<i>j0-</i>					

Huge potential [δ(stat)] ...but big challenges [δ(syst)]

- Beam-related syst: Accelerator front
- All other syst: us (EXP or TH communities)

Loukas Gouskos

US Higgs factory planning (SLAC 2024)

- Stress test: 10¹² Z bosons (i.e., LEP x 10⁶)
- Challenges:
 - Large event rates O(100kHz)
 - Fast detector response \rightarrow trigger-less readout (can we?)
 - Beam BKGs, Bhabha scattering,...
 - High occupancy in 1st layer/fwd region
 - Precise modeling crucial
 - ◆ Precise acceptance determination: 10⁻⁴-10⁻⁶
 - e.g., need to model detector transition regions O(15)µm
 - Excellent track momentum $\delta(1/p) \sim 10^{-4} 10^{-5}$ & angular resolution
 - tagging efficiencies, etc...
 - How we address them?
 - \rightarrow Are current detector concepts sufficient ?
 - \rightarrow SW/analysis side: Detailed simulation and understanding needed

- Stress test: 10¹² Z bosons (i.e., LEP x 10⁶)
- Challenges:

Large event rates O(100kHz)

Simulation and Reconstruction: status

- The majority of all these studies carried out in FastSim
 great for fast turn around, but:
- We need the Full chain DIGI \rightarrow SIM \rightarrow RECO \rightarrow Analysis
 - Currently only for CLD: 2 analyses: m_H and tau polarization
- IDEA and Allegro:
 - Some parts are FullSIM
 - Much less for RECO
 - e.g., tracking for Drift Chamber \rightarrow very preliminary
 - IDEA, Allegro FullSim: Effectively not usable for analysis

Simulation and Reconstruction: next steps

- Those are areas that US has definitely expertise
 - We are involved but we can make even more impact
- IMHO: No need to start from scratch

Key4HEP

- → Ecosystem where various components "talk" to each other
- → Consistence across detectors/machines

Talk at S&C parallel session by J. Carceller

Executive summary /discussion

- Lot's of work ahead
 - Define relevant physics benchmarks (Higgs, Flavour, LLPs,..)
 - go beyond Physics Object metrics
 - FastSim and FullSim of the (sub-)detectors
 - Versatile framework, fast turn around from detector concept to impact on physics outcome
 - $_{\circ}$ Is FastSim good enough?
 - Reconstruction (Traditional, ML-based)
 - Far from done
 - Simulation of BKGs, understanding rates → inform detector design
- Key for success: multi-way communication between groups
 Detector, SW, Integration

• • • • • •