Timing layer design and plans

Alessandro Tricoli (Brookhaven National Laboratory)

US Higgs Factory Planning Dec 19 – 20, 2024 SLAC

The rise of 4D detectors

- As 4D detector Technologies are becoming more advanced, we realize their benefit in collider experiments
 - Pileup suppression at hadron colliders
 - Timing useful input to Particle Flow algorithms
 - Timing as additional information from the **Calorimeters**: identification of slow from prompt shower components
 - **PID capabilities/Time-Of-Flight** across a wide momentum range is essential: flavor physics, H→ss...
 - Identify long-lived particles (LLPs) and expand the reach for new phenomena
 - Suppress **out-of-time Beam Induced Backgrounds** (e.g. Muon Collider)
 - Silicon technologies can meet the need for 4D detectors at Future Higgs Factories experiments

Timing Layer Specifications

- Large-radius timing layers in front of the calorimeter can provide Time-of-Flight (ToF) for PID
 → Flavor physics, H→ss
- Need 10 ps resolution over 2 m lever-arm for K/π separation at low momentum (up to ~4-5 GeV)
 - Drift chamber: PID by dE/dx or cluster counting (dN/dx)
 - $\circ~~$ 3 σ for K/ π separation up to 35 GeV
 - Complemented with TOF for hole at 1 GeV

K/π separation

- time of flight

— dN/dx

····· combined

• Exploit high luminosity Z run of FCC-ee to search for LLP:

- Heavy Neutral Leptons
- Axion-like particles
- Exotic Higgs decays
- Timing information:
 - Simultaneous determination of mass and proper decay time combining decay path and ToF
 - Combination with displaced vertex reconstruction for enhanced performance

Ariel Schwartzman, https://indico.slac.stanford.edu/event/8992/contributions/1062; /attachments/4753/12818/4DTracking_physics.pptx.pdf

Current Silicon Wrapper Design

ALLEGRO Detector Concept (FCC-ee)

Tracking Information

- Improve momentum resolution thanks to long lever arm
- Extend tracker coverage in forward regions
- Precise and stable ruler for acceptance definition

IDEA Detector Concept (FCC-ee)

In Simulation (Full-Sim):

	Burren							
	R [mm]	L [mm]	Si eq. thick. [µm]	X0[%]	Pixel size [mm ²]	area [cm²]	# of channels	
ayer 1.	2040	±2400	450	0.5	0.05×100	616K	12.3M	
.ayer 2	2060	±2400	450	0.5	0.05×100	620K	12.4M	

Rⁱⁿ Imm 7 fmm Si en thick xol% Pixel size area (cm # of [µm] [mm²] Diek 1 +2300 0.5 0.05×100 5M Disk 2 2020 ±2320 450 0.5 0.05×100 250K

https://fcc-ee-detector-full-sim.docs.cern.ch/IDEA/

- Covered area: ~100 m²
- Low material budget: ~ 1% X/Xo
- Two barrel layers and two disks, to have at least one silicon hit, but most of the cases we have two silicon hits

Rarrol

Endcap

- Multi-module tiles on staves (ATASPIX3 quad module concept)
- No detailed layout of the mechanical structure yet

Current Silicon Wrapper Design

Disks:

- Tiling the disks with tiles of 6, 12 and 24 modules
 - → Total of 30,432 modules

Barrel:

- Each stave is a long tile
- Each layer made up of 151 staves with ٠ 129*2 modules
 - → Total of 77,916 modules

Material:

 $\cos(\theta)$

- Flex and cooling pipes • (same as in vertex outer barrel and disk)
- 50 µm silicon ٠
- 1.4 mm of carbon fibre

Detector Technologies for Si-Wrapper

Proposed detector technologies for Si-Wrapper: Strips

• Microstrips (available)

CMOS sensor

- DMAPS (advanced)
- LGAD (advanced)

- Low mass tracking
 Timing in addition to Tracking (4D)

Adding timing capabilities to Si-Wrapper comes with limited extra effort/resources

Monolithic AC-LGAD

← Tracking only

100% fill factor and fast timing information at a per-pixel/strip level **→** 4D

LGAD Sensor Performance

- Long AC-LGAD strip sensors performance
 - Position reconstruction
 - Achieve **15-20 μm** resolution in *1 cm strips, 500 μm pitch*
 - → Same resolution as microstrips with larger pitch
 - Excellent time resolution
 - Achieve **30-35 ps** for 1 cm strips, 50 μ m active thickness
 - ➔ Same time resolution as LGAD

Signal shared between neighboring electrodes in AC-LGADs: Measure position based on signal ratios

AC-LGAD with smaller thickness: 20, 30 μ m

- o Faster Rise-Time
- o Time resolution improves with smaller active thickness
- For 20 μ m time resolution <20 ps
- Fast-time readout ASICs for 4D detectors are also becoming available

LGAD Sensor Performance

✤ Long LGAD strips can be read from both ends → longer strips

- o Based on time-lag between two ends
- o Good linearity
- Position resolution along z~0.9 mm (intrinsic 5.5 mm) for a total strip length of 19mm
- Time resolution
 - Achieve ~37 ps with 19 mm strip length

Weyi Sun

https://indico.cern.ch/event/1439336/contributions/624221 5/attachments/2977964/5243205/4d_aclgad_swy_7.pdf

original idea by UCSC

4D Detector Challenges

Complexity

- Short strips (~1-2 cm) are needed for good timing
- Many readout channels

Material Budget

- o Silicon detector adds considerable material before calorimeter
- Can be minimized with monolithic technologies

Readout

- Advanced 4D ASICs are needed (under development)
- Power consumption depends on technology used

Cooling

- o Depending on technology, active cooling may be needed
- Costs
 - o Large surface area for silicon
 - $\circ \quad {\rm Development} \ of \ advanced \ electronics$

- Progress is made fast in this field
- Large interested community: multiple scientific applications
- We have time and human resources for innovation

Synergies

Design target of CEPC ToF Barrel					
Area	~ 70 m ²				
Radius	1.8m				
Length	5.8m				
Strip Length	20 mm (to be determined)				
Strip Pitch	100-500 µm (to be determined				
Channel number	~ 10 ⁷ channels				
MIP Time resolution	~50 ps				
Spatial resolution	~ 10 μm (R-Φ)				
	Design targe Area Radius Length Strip Length Strip Pitch Channel number MIP Time resolution Spatial resolution				

AC-LGAD:

- PID Time of Flight detectors to cover PID at low pT
 - Also provide time and spatial info for tracking
 - Resolution: ~30 ps, 30 um (with charge sharing)
- Barrel (BTOF): 0.05 x 1 cm strip, 1% X/Xo
- **Forward disk (FTOF)** : 0.5 x 0.5 mm² pixel, 8% X/Xo
- Far-Forward Detectors: Luminosity Monitor (strips),
 Bo (pixels), Roman Pots (pixels)
 - ASICS being developed

Opportunities

- The Silicon Wrapper a 4D detector (Time+Space)
 - o Adding time information comes with small overhead to tracking, and may reduce with AC-LGADs channel count with same tracking resolution
- More extensive 4D capabilities
 - Timing in calorimeter, e.g. Crystal ECAL + Timing Layer?
- Other experiments and R&D are stepping stones and opportunities for collaborations (HL-LHC, ePIC, CEPC, DRD3, RDC)
 - Work collectively on common challenges
- Great opportunity for innovation
 - Let's be ambitious!
 - High risk & high returns

Activity Focus:

- 1. Define performance specifications based on physics benchmark processes
 - Strong physics case must be made for timing layer
- 2. Narrow-down technologies based on physics specifications
- 3. Layout optimization
 - Strip length, pitch → reduce complexity (e.g. no. of channels)
 - Module, Tile, Stave layouts (experience from LHC)
- 4. Sensor R&D
 - Thin & Fast (~20 ps),
 - Precise Tracking (~10 μm)
- 5. Readout Challenges
 - Low power, low jitter, TDC/ADC, pulse sampling, ML?
- 6. Mechanical Challenges
 - Minimize support material but preserve reliability
 - Cooling

Interests from US Institutes (FCC-ee EoI list):

- Timing/LGADs in Vertex Det and Si-Wrapper+TOF
 - BNL, FNAL, Boston U., SCIPP, U. New Mexico, SLAC, ORNL
- Calorimeter:
 - o SLAC

Conclusions

- R&D to investigate the **full potential of fast timing detectors at future Higgs Factories** is an exciting opportunity for the particle physics community
- Silicon Wrapper in IDEA and ALLEGRO is a great opportunity for innovation in 4D technologies
- Physics case for timing layers is to be strengthened
 - o Specifications need to be defined
- **R&D on 4D detectors is world-wide** and we can leverage other projects and scientific applications
 - The US can **focus on strategic R&D** that complements international developments
 - Specific deliverables, e.g. 4D Silicon Wrapper
 - o Define goals, specs, layout
 - o Study physics performance
 - Development of specific/complementary technologies, foundries and processes for sensors and chips
 - o e.g. AC-LGAD, monolithic sensors
 - $\circ \quad \text{ e.g. low power 4D ASICs} \\$
- Let's be ambitious and focused!

Backup

LGAD Technologies

Low Gain Avalanche Diode (LGAD) is advanced technology for precision timing

- Used in ATLAS and CMS for HL-LHC timing detectors
- Several foundries in China, Europe, US and Japan
- Thriving field of research for 4D detectors: pixels or strips with various processes

no-gain region

Pixel 1

ultiplication regio

		14	-
<u> </u>			É
	•		
U#		- /	IJ

AC-LGAD

Deep-Junction LGAD

Position resolution given by pitch, as in std pixels/strips

Trench-Isolation LGAD ~100% fill factor, signal in single pixel (no share)

Pixel 2

Multiplication region

DRD WG2 – Readout Challenges

- ASICs for HL-LHC Timing detector (pitch of 1.3 mm x 1.3 mm):
 - o ATLAS HGTD <u>ALTIROC</u> chip in 130 nm CMOS
 - CMS ETL <u>ETROC</u> chip in 65 nm CMOS

• From the ECFA Roadmap: Technology Choice

- The selection and adoption of the <u>28 nm CMOS</u> technology as a "mainstream" process will "fuel" the developments of "near-future" experiments
- A few chips are being developed at the moment for *4D tracking*:
 - Ignite and PicoPix, focused on LHCb VELO upgrade in 28 nm CMOS
 - *EICROC* for ePIC detector at EIC in 130 nm CMOS
 - Fermilab's *FCFD* for 4D trackers in 65 nm CMOS Etc.
- o but nothing readily available at the moment

DRD3 WG2 will help to collect requirements for future ASICs and unify efforts

Monolithic Detectors

Chip name	Experiment	Subsystem	Technology	Pixel pitch [µm]	Time resolution [ns]	Power Density [mW/cm ²]
ALPIDE	ALICE-ITS2	Vtx, Trk	Tower 180 nm	28	< 2000	5
Mosaic	ALICE-ITS3	Vtx	Tower 65 nm	25x100	100-2000	<40
FastPix	HL-LHC		Tower 180 nm	10 - 20	0.122 – 0.135	>1500
DPTS	ALICE-ITS3		Tower 65 nm	15	6.3	112
NAPA	SiD	Trk, Calo	Tower 65 nm	25x100	<1	< 20
Cactus	FCC/EIC	Timing	LF 150 nm	1000	0.1-0.5	145
MiniCactus	FCC/EIC	Timing	LF 150 nm	1000	0.088	300
Monolith	FCC/Idea	Trk	IHP SiGe 130 nm	100	0.077 – 0.02	40 - 2700
Malta	LHC,	Trk	Tower 180 nm	36x40	25	> 100
Arcadia	FCC/Idea	Trk	LF 110 nm	25	-	30

C. Vernieri: https://indico.mit.edu/event/876/contributions/2694/attachments/1039/1721/MIT-workshop-Detector.pdf

CERN's DRD Collaborations

DRD3 Working Group 2 (4D Hybrid Detectors)

Broad scope:

- Sensors with 4D capabilities foreseen in many systems, from <u>Time-of-Flight</u> systems with only 1-2 layers of sensors with the best possible timing resolution to large <u>4D trackers</u> with many layers.
- Two main technologies assumed in WG2: <u>3D and LGAD sensors (in all their flavors)</u>
- <u>Additional technologies</u> can be explored in the future if new ideas will come forward

Challenges:

• Hadron colliders: high radiation levels and high occupancies

Lepton colliders: requirement of low material budget and low power dissipation

Webpage (under development): <u>https://drd3.web.cern.ch/wg2</u>

WG2 – Activities (LGAD detectors)

- **Full scale detector with pixelated LGAD sensors to achieve a position resolution <10 μm,** with a timing resolution <30 ps before irradiation, also in high occupancy environments.
 - Possible application for the replacement of outer pixel layers or disks in the CMS/ATLAS pixel dets. in Phase-III. Requested radiation tolerance for HL-LHC can be in the range of 1-5x10¹⁵ n_{ed}/cm²

RG 2.4 • LGADs for particle identification (Time of Flight)

- Possible applications: <u>ALICE 3 (Run5)</u>, <u>Belle2</u>, <u>Electron Ion collider (Tracking+TOF@ePIC) >2031</u>) and Future <u>Lepton colliders (>2040)</u>.
- Larger surfaces (several m²) have to be covered
- Yield and reproducibility of the process have to be demonstrated while radiation hardness is less of a problem
- <u>Electron Ion Collider</u>: a spatial resolution ~30 μm and timing resolution <30 ps are required. An area up to 13 m² has to be instrumented. Proposal: pad size of 0.5 mm with a spatial resolution ~ 10 μm
- <u>Future lepton colliders</u>: a ToF could be placed as the most external tracking layer, with a surface of around 100 m^2 , < 30 ps, and spatial resolution ~10 (90) μ m (r- ϕ , z).

