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* Abit less established design
*  But still ¥15y history
* Sivtx detector; ultra light drift chamber w
powerful PID; compact, light coil;
* Monolithic dual readout calorimeter;
* Possibly augmented by crystal ECAL
*  Muon system M-RWELL
* Very active community
* Prototype designs, test beam
campaigns, ...

———— 106m —————>
*  Well established design
* |ILC->CLIC detector -> CLD
e Full Si vtx + tracker;
*  CALICE-like calorimetry;
* Large coil, muon system RPC
* Engineering still needed for operation with
continuous beam (no power pulsing)
* Cooling of Si-sensors & calorimeters
* Possible detector optimizations
e Op/p: o./E
* PID (O(10 ps) timing and/or RICH)? i

< FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4 1
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* Adesignin its infancy
* Sivtxdet., ultra light drift chamber (or Si)
* High granularity Noble Liquid ECAL as core

*  Pb/W+LAr (or denser W+LKr)
¢ CALICE-like or TileCal-like HCAL;
* Coil inside same cryostat as LAr, outside ECAL
« Muon system. Open technology choice
* Very active Noble Liquid R&D team

* Readout electrodes, feed-throughs,

electronics, light cryostat, ...
* Software & performance studies



https://indico.cern.ch/event/1291157/contributions/5888444/attachments/2900747/5086820/Abbrescia@ICHEP2024.pdf

Proposed Detectors
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* Large RPC detectors are used in LHC experiments
Fast timing (a few ns) trigger detector
Provide 2nd - coordinator with precision (a few cm)
Limited rate capability (at an order of ~102 Hz/cm2)

¢ Challenges
Use Eco-friendly gas
Need good angular resolution to match ID muon tracks
Limited spatial resolution for detection of LLP

Reliable operations, efficiency, rate capabilities
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¢ Challenges
Not yet used in experiments; Needs intensive R&D
Large number of channels — 5 Million for the IDEA proposal
Limited spatial resolution -- < 400 mm for the IDEA proposal




US Muon Expertise - CMS
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US Muon Electronics - CMS
CSC
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US Muon Expertise - ATLAS
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ATLAS precision muon detector: Monitored Drift Tube (MDT) chambers
Drift gas: Ar:CO2 (93:7), p=3 bar, max drift time 750 ns
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US Muon Electronics - ATLAS
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Drift Tube Electronics

* Proposal for muon detector including drift tubes for tracking & trigger
Simple, robust, and inexpensive suitable for large scale construction

Capable of achieving < 200 mm single wire resolution for all muon incident angles

* Goals for electronics — requires R&D

Capable of 3D tracking achieving < 200 mm single wire resolution and few cm in 2nd coord

(along tube)

Capable of trigger: determining t, with few ns time resolution, determine BCID

* Detector R&D to accompanied by additional electronics R&D including
Choice of chamber drift gas

Alternative geometries such as a squared drift tube detector



Drift Tube Electronics R&D
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Drift Tube Electronics R&D

* Investigate new low-power front-end electronics
- with precise timing resolution
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Electronics for Square Drift Tube

* Study signals from alternative geometries (e.g. square tube) and investigate changes in
the electronics requirements using simulations

* Also study signals from alternative drift gases
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M-RWELL Electronics R&D

o A modern micrO'pattern gas dCtGCtOr
(MPGD) with single amplification stage
—  Currently proposed by IDEA experiment for muon

systern

* Several R&D topics in the US

— Chamber production capabilities in the US

—  Studies of gas mixtures

e Electronics essential for success of R&D
— Interesting to explore needs and interest in US

—  Opverlaps with past experience

J 50cm x 50cm

URWELL modules
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Connection to TDAQ R&D

* Traditional multi-layered triggered architecture

— Efficient data reduction, may involve multiple subsystems, synchronized

data processing, progressive filtering, centralized decision

* Self-trigger capabilities

— multi-layer detection, trajectory reconstruction, flexible, adaptable,

reduced latency, less complex infrastructure, data reduction at source
* Triggerless “streaming” mode

— Simpler infrastructure, comprehensive data, sophisticated offline
algorithms, no hardware latency

* Other remarks

— Real time decision, scalable, versatile, comprehensive

— New technologies? Machine Learning, adaptive algorithms, etc

12



Expanding Possible Signatures

*  New detector opens up possibilities for
exotic signatures which can be difficult to

trigger on and reconstruction
Long-lived particle decays with non-pointing
signatures
Slow moving or highly-ionizing particles with
different timing
High muon multiplicity signals

* New electronics could help improve
sensitivity, for example
Charge measurements in addition to time

Multi-thresholds to distinguish pileup
Flexible design

from H. Russell
13




Conclusions

* Electronics are a crucial part of the design of the muon detectors to achieve goals of
high resolution and fast measurements for tracking and trigger
* Focusing initial Muon Electronics R&D in a few areas

— Simulations to characterize the signals and the electronics to accompany the detector R&D
Different geometries
Alternative drift gas choices

— Design and prototype for dual-sided readout of drift tubes
— Study possibilities for low-power high precision timing
— Investigate trigger and DAQ architectures possible with front-end design
* Building up the R&D collaborations, and contribute to the detector concept design
— Harvard, U Michigan, and UMass Amherst in the US, together with MPI

— Discussing with other groups about joining effort U. Wisconsin
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