Scintillator-SiPM Hadron Calorimetry

Vishnu Zutshi

Northern Illinois University

FCC Detector Models

CLD/ILD'

ALLEGRO

Currently features as a sub-detector in atleast two of them Was part of both ILC detector concepts Potential synergies with dual-readout

Strawman Design

~ 44 Scint-Steel layers 5.5 Interaction lengths Default tile sizes are 30 mm x 30 mm Looking at a few million channels

Significant challenges: Channel counts Electronics for continuous readout Cooling System integration and design

12/19/2024 N. Bachetta et al.

US Involvement (ILC/SiD/CALICE)

US (NIU) played a pioneering role in most of these design aspects

Main Design Elements

CENTER WEDGE

M. Reinecke, DESY

US Involvement (ILC/SiD/CALICE)

US Involvement (CMS \rightarrow HGCal)

CE-H is 21 Steel absorbers with Si and/or scintillator readout Around 9 interaction lengths 270 m² of scintillator in ~280k tiles Tile sizes vary from ~3 cm² to ~ 30 cm² Cast and injection molded tiles Detector has CO₂ cooling

US Institutions have very significant responsibilities on the Scint-SiPM HGCAL

US Involvement (CMS \rightarrow Scint-SiPM HGCal)

• Tiles

> All cast tiles machined at NIU (~200 k)

> All injection molded tiles fabricated at Fermilab (~ 100 k)

- SiPMs : Notre Dame responsible for testing and QC
- Wrapping: ~ half at NIU (other half at DESY)
- Tileboard procurement and testing : University of Maryland
- Tileboard assembly: Fermilab responsibility (shared with DESY)
- Common w/ the Si parts:
 - Cassettes : Fermilab
 - Electronics : Minnesota and Florida State

Most of these institutions have expressed interest in USFCC Scint-SiPM calorimetry. In addition, Iowa and UTA.

>Overall management: Minnesota and Florida State

Tile Fabrication

Wrapping

Silicon Photomultipliers

M. Wayne, Notre Dame

Tileboard Testing

12/19/2024

Tileboard Assembly

Assembly Steps ~ 30 mins

Step 1: Assembly trays are placed on the PnP machine

Step 2: 15-20 mins Tiles are picked, QCed, and placed on tile-board using PnP machine Step 3: 10 mins It's transferred to vacuum bag for bonding strength for 10 mins

Step 4 It is returned and protected by a cover plate and recored in DB

Tasks Ahead

- Simulation and Design Optimization
 - > full design specification (layers, tile size, cracks, modules etc.)
 - interface to Ecal
 - > refinements ? (precision tracking layers, timing etc)
 - Shower simulations and testbeams
- Prototyping and scalability
 - > still more than an order of magnitude more channels than the HGCal \rightarrow fabrication, assembly and QC scalability
 - \succ applies to all active elements

Tasks Ahead

- Front-end Electronics
 - no power pulsing
 - new ASICs and concentrators (common with ECal?)
 - > dead zones, power consumption
- Cooling and System Integration
 - \succ active cooling needed
 - absorber structure, module segmentation, Barrel-encap transition, services
 - validation by prototypes

Summary

- Long history of US experience and innovation in all aspects Scintillator-SiPM Hadron calorimetry
- Experience spans prototyping and actual detector construction and assembly
- Around half-a-dozen institutions with strong involvement in Scint-SiPM hadron calorimetry have already expressed interest
- US institutions can make a significant impact on the interesting R&D questions