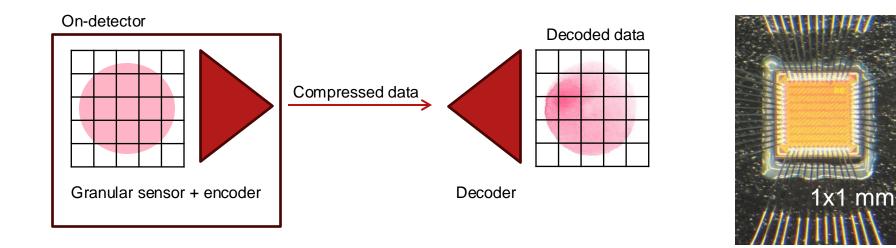
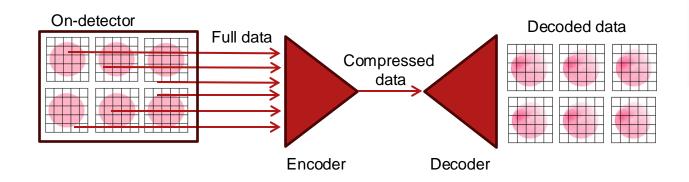
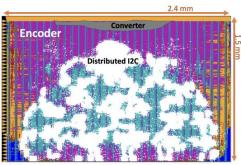


AIM for a Higgs Factory

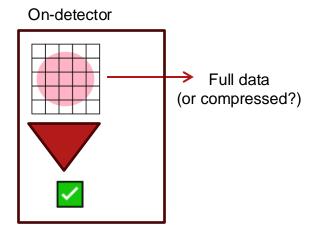

Jennet Dickinson US Higgs Factory Planning Meeting December 19, 2024

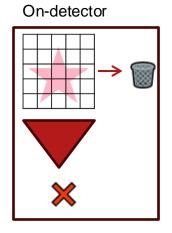
Scope of the AI/ML L3 area

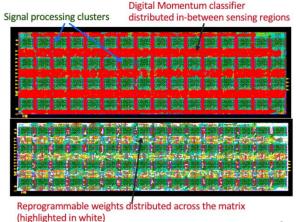

- Using AI/ML on-detector
 - Connection to microelectronics, TDAQ
- Using AI/ML for detector design/optimization
 - For a specific subsystem (e.g. tracker, calorimeter)
 - For the detector as a whole (connection to integration)
- Have other ideas? Please share!


- Reduce data rates from detectors with many channels by using ML to do some processing at the edge
- Goal: maximize performance and flexibility of a ML algorithm in a highly resource-constrained environment
 - Power, area, latency
- How? Implement a digital NN on-ASIC, eFPGA
 - What can be done with pure analog? This is also being explored
 - Can this be done on a monolithic pixel detector? Probably, but let's try

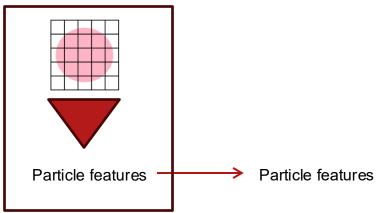
- Reducing bandwidth via compression with an auto-encoder
 - To transfer highly granular sensor data off-detector (example with eFPGA)


- Reducing bandwidth via compression with an auto-encoder
 - To concentrate data from many modules (e.g. <u>CMS HGCAL: ECON-T</u>)




- Reducing bandwidth by filtering data
 - For example, based on estimated track momentum

High p_T track


Low p_T track

< 0.2 mm²

- Reducing bandwidth by directly learning particle properties
 - For example, particle position and incident angle
 - Decouples size of data readout from e.g. pixel geometry

On-detector

On-detector: who is thinking about it?

- A3D3 (website)
- Fast ML (<u>website</u>)
- smartpixels (website)
- eFPGA at SLAC
- You? Let me know!

On-detector: what does it require?

- Detailed simulations to use in training
 - Can simulated samples from detector groups be made public?
- Algorithm development
 - Computing resources, person power
- Implementation and prototyping
 - Substantial engineering support, fabrication costs

Design/optimization: what is it for?

- Detectors have a lot of design parameters (\vec{x})
 - Geometry, material properties, power and data rates, etc.

 $F(\vec{x}) = \text{sensitivity}$

- Can use ML to find \vec{x} that maximizes sensitivity to a physics process
 - Challenge: what do we optimize? What is the loss function of CMS or ATLAS?
 - Some examples can be found <u>here</u>

Design/optimization: who is thinking about it?

- MODE Collaboration (<u>website</u>)
- You? Let me know!

Design/optimization: what does it require?

- A simulation pipeline that is differentiable
 - There have been efforts to incorporate this feature into e.g. Geant
- Computing resources, person power

Summary

- Work ongoing in multiple directions to implement AI/ML on-detector
 - So far, focus has been on reduction of data rate in pp scenario
 - Dedicated studies for ee should be strongly encouraged
- Interest in AI/ML for detector design/optimization
 - Very cross-cutting topic with substantial overlap with I of AIM group