December 19, 2024

Si-tungsten (SiW) Calorimetry for the Higgs Factory

Jim Brau, University of Oregon

Research partially supported by the U.S. Department of Energy

SiW Calorimetry for the Higgs Factory

- * There have been many applications of silicon-tungsten calorimetry
 - Luminosity monitors (SLD, Opal, Aleph)
 - Pre-shower detector (ZEUS, FASER)
 - Test-beam prototypes (SiD, CALICE, EPICAL)
 - * Forward calorimeter at LHC (CMS HGCAL, ALICE FOCAL)
- * ECal requirements for particle flow motivate SiW ECal for Higgs Factory
 - * Isolate showers and nearby particles in a jet
 - * Measure energies of each shower in jet
 - * Measure energy and position of isolated gamma showers
 - * Power management is critical

SiW Calorimetry for the Higgs Factory

- There were three group responses to our call for input from colleagues interested in participating in the HFCC Si-W ECal activity
 - * Graham Wilson (Luminosity monitor and forward calorimetry)
 - Graham will discuss his interests
 - * CMS HGCAL group
 - * Lindsey Gray, Murtaza Safdari, Zoltan Gecse
 - * "Interested in exploring the simulation and electronics design of a pixellated Si-W electromagnetic sampling calorimeter employing MAPS sensor technology as the sensing mechanism. Pending funding, we will develop further simulations of a full detector, and use those simulations to understand data rate considerations and readout implementations possible using real-time machine learning, working towards fabrication. Furthermore, we will work with the other calorimetry efforts at FNAL towards a proposed calorimetry testbeam area. We will seek to gain practical experience by working with collaborations that have already developed small-scale MAPS-calorimeter prototypes already developed."
 - SLAC/Oregon
 - * Caterina Vernieri, Lorenzo Rota, Martin Breidenbach, Jim Brau, David Strom

SiW Calorimetry for the Higgs Factory

Digital ECal with Monolithic Active Pixel Sensors

- MAPS development driven by needs of tracking system
- * Applied to ECal offers improved capability over larger, analog pixels
 - counting mips improves energy resolution
 - for example, 5000 um^2 pixel enables this
 - * approximate separation of mips near shower max
 - * containment of shower enables individual particle separation in jets
 - * smaller than Moliere radius beneficial (not just Moliere radius)
 - * shower position measurement contributes to jet reconstruction
 - * timing of sub-nanosecond required to separate accelerator bunches.

Digital MAPS ECal R&D

DECAL prototype reality: EPICAL-2

includes ALICE FoCAL collaborators

SiW Calorimetry for the Higgs Factory

* SiD MAPS Project

	Specification	Simulated NAPA-p1			
Time resolution	1 ns-rms	0.4 ns-rms 🗸 🗸			
Spatial Resolution	7 μm	7 um 🗸			
Noise	< 30 e-rms	13 e-rms 🗸 🗸			
Minimum Threshold	200 e-	~ 80 e-			
Average Power density	< 20 mW/cm ²	0.1 mW/cm ² for 1% duty cucle V			

The chip was received at SLAC in September 2023

Microscope photo of NAPA-p1

J. Brau - 19 December 2024

Acknowledgement: CERN WP 1.2 for the excellent cooperation: NAPA-p1 uses the pixel masked developed and optimized by CERN, and was fabricated in a shared run led by CERN

Digital MAPS ECal R&D

 * EPICAL - full calorimeter tested by European group

24 layers, each

- 3 mm W / 2 ALPIDE CMOS
- 3 x 3 cm² active
- 1M (29.24 x 26.88 µm²) pixels
- ultra-thin flex cables (LTU Kharkiv)
- compact design: expect $R_M \approx 11 \text{ mm}$

 SiD - developing sensor optimized for Higgs Factory

	Specification	Simulated NAPA-p1	
Time resolution	1 ns-rms	0.4 ns-rms	
Spatial Resolution	7 μm	7 um 🗸	
Noise	< 30 e-rms	13 e-rms 🗸	
Minimum Threshold	200 e-	~ 80 e-	
Average Power density	< 20 mW/cm ²	0.1 mW/cm ² for 1% duty cucle 💙	

icroscope photo of NAPA-p1

The chip was received at SLAC in September 202

Two groups engaged in active discussions - EPICAL includes FoCAL collaborators

SiW Calorimetry for the Higgs Factory

Main specifications for Large Area MAPS development

Parameter	Value	Notes	L. Rota	a 📕		JLAC	
Min Threshold	140 e [_]	0.25*MIP with 10 µm thick	epi layer		25 x 100 µm ²		
Spatial resolution	7 µm	In bend plane, based on S specs	iD tracke		ECal performance same as		
Pixel size	25 x 100 µm ²	Optimized for tracking(or 2		50 x 50 μm²			
Chip size	5 x 20 cm ²	Requires stitching on 4 sides					
Chip thickness	300 µm	<200 µm for tracker. Could b EMCal to improve yield.	e 300 µm				
Timing resolution (pixel)	~ ns	Bunch spacing: C ³ stricte 5.3->3.5 ns; ILC is 554 ns	st with		Ecal		
Total Ionizing Dose	100 kRads	Total lifetime dose, not a concern					
Hit density / train	1000 hits / cm²						
Hits spatial distribution	Clusters	Due to jets					
Balcony size	1 mm	Only on one side, where wire-bonding pads will be located.			SiD Tracker and the	e ECal	
Power density	20 mW / cm ²	Based on SiD tracker power<1 ml			N/cm ² % duty cycle	8	

Proposed US Effort on MAPS for ECal

arXiv:2306.13567

US MAPS ECal development will proceed in parallel with US Tracking Sensor Development Efforts (CPAD RDC3) and ECFA DRD3 to enable large scale production at competitive cost.

- FY23-24: Develop power and signal distribution schemes compatible for cal and tracking, in addition to evaluating first pixel results.
- FY25: Design PCBs with variations for the services balcony at the edge of sensors. Submission for sensors for large
 prototype active layers. Understand options for alternative foundries.
- * **FY26:** Prototype attachment of sensors to PCB, probably with a conveyor oven so large production is feasible.
- * **FY27:** Build prototype multilayer section with edge cooling and prepare/begin beam test.
- * **FY28:** Complete beam tests with technical verification.
- FY29-32: Design, construct and test MAPS ECal modules based on final design of sensors and sampling layer configuration.
 - * Physics and detector simulation throughout this effort to back up project.

US MAPS ECal Institutes: SLAC, University of Oregon

SiW Calorimetry for the Higgs Factory

Layout of SLAC prototype for WP1.2 2022 shared submission SiW on TowerSemi 65nm

Large Area MAPS - Highlights and Next Steps

Approach:

- Focus on long-term R&D, targeting simultaneously:
 - ~ns timing resolution
 - Power consumption compatible with large area and low material budget
 - Fault-tolerant circuit strategies for wafer-scale MAPS

Highlights:

- 1st SLAC prototype on TJ65nm (2023) from CERN WP1.2 shared run
- Performance of 1st SLAC prototype on TJ65nm (2023) evaluated

Next steps:

- New design combining O(ns) timing precision and low-power (2024/2025).
- Stretch Goals: design of a wafer-scale ASIC (2025/2026, design only)

Engagement :

- Higgs Factory detector initiative R&D
- DRD 3 silicon sensors
- DRD 7.6 on common issues of power distributions compatible with stitching A. Habib *et al* 2024 *JINST* **19** C04033

C. Vernieri, MAPS DRD 3.1 talk

SiW Calorimetry for the Higgs Factory

SiD

Ultimate Resolution (mips)

Mips(0.1 MeV) sumM2lin Entries 2000 140 695.6 Mean ll mips Std Dev 19.97 = 2.9% Mip threshold = 0.1 MeV 100 Mean = 696.2 mlp Width = 19.1 mips 80 = 2.8% chi2/ndof = 63.4/35 = 1 10 GeV 60 2.8% 20 650 800 Mips Mips(0.1 MeV)-hits sumM2hlin st 140 Pixels 2000 Entries 637 Mean Std Dev 21.56 = 3.4% w/mips 100 aussian Fit Mean = 636.9 mlps Width = 21.0 mlps = 3.3% 10 GeV 2/ndot = 60 1/40 = 60 3.3% 40 20-600 650 700 800 Mips/hits 550 750

mip counted once in a layer, when it enters sensor.^{SiW} Calorimetry for the Higgs Factory Gamma Resolution vs. Energy (B=5T)

Mips/cluster vs. shower $R 10 \text{ GeV } \gamma \text{s} - 2000 \text{ showers}$

SiW Calorimetry for the Higgs Factory

Resolution vs. Energy (hits/clusters/mips)

Resolution vs. Energy (hits/clusters/mips) & weighted clusters.

Resolution (%) Gamma Resolution vs. Energy 25 um x 100 um pixels TDR (17/ E⊕1)% Bz=5T hits (B=5T) clusters (B=5T) 10 wtd clusters (B=5T) mip active pixels ALL mips (E>0.1 MeV) 3% $16.4\%/\sqrt{E} \oplus 2.0\%$ $13.7 \% / \sqrt{E} \oplus 1.9 \%$ $12.2 \% / \sqrt{E \oplus 1.4 \%}$ **Cluster properties weighting** $E \oplus 1.1\%$ improves performance. $9.8\%/\sqrt{}$ $E \oplus 0.2\%$ 10 Gamma energy (GeV)

Gamma Resolution vs. Energy (B=5T)

Multi-shower of SiD MAPS compared to SiD TDR $40 \text{ GeV } \pi^0 \rightarrow \text{two } 20 \text{ GeV } \gamma$'s

Illustrates PFA Potential

Improved shower transverse position measurement

					1				Shower Clusters	
			Shower position measurement					10 GeV Shwrplot0 Clusters)Sca	
	Shower spread								0 ≤ Layer ≤ 40	
			all clusters		within 4 mm		1st 20 Layers		35 30 25	
Eγ (GeV)	Y (mm- rms)	Z (mm- rms)	δY (mm)	δZ (mm)	δY (mm)	δZ (mm)	δY (mm)	δZ (mm)		
1	4.7	4.2	1.17	1.04	0.77	0.64	0.68	0.55	70^{-50}_{-100} $-150_{-200-1000}$ $800^{-600-400-200}_{-100}$ 10_{-100} 10_{-100}	yοο
10	4.8	4.3	0.43	0.37	0.22	0.18	0.17	0.15	Averge Y - all events Averge Y - all events avgY Entries 2000 Mean 0.02466 Std Dev 0.4303 mean shower position	Гр. в. 3
50	5.1	4.6	0.21	0.20	0.12	0.11	0.11	0.10	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ -2.5 & -2 & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 & 2 \\ & & & & & & & & \\ & & & & & & & &$	

Different challenges for Linear & Circular Colliders

* Important, driving motivation for linear colliders is high energy reach.

Different challenges for Linear & Circular Colliders

C³ Timing Structure

* Linear Colliders use bunch trains, with significant time between trains

- * compare to FCC bunch spacing at 250 GeV ~ μsec
- * This enables LC power pulsing, reducing heat load by two orders of magnitude, or more

Heat conduction from ECal sensor to cold plate

- * MAPS generates ~kW/m² when powered
 - each sensor is 100 cm²
 - * power pulsing can reduce heat load
- * First heat flows through 300 $\mu m~N_2$ to tungsten
 - * $\Delta T \ll 1 K$
- Then heat flows thru tungsten to cold plate
 - * Tungsten absorber lengths 0.5-1.0 m
 - Temperature rise is length dependent

Heat conduction from ECal sensor to cold plate

- Duty cycle 0.07% (C3/CLIC) ΔT ~ 0.5 2 K
- Duty cycle 0.5% (ILC)
 ΔT ~ 4 16 K
 - Without power pulsing temperature blows up and needs active cooling
 - * design for FCC/CEPC (bunch spacing ~µsec)?
 - Iearn from CMS HGCAL

SiW Calorimetry for the Higgs Factory

Digital ECal Based on MAPS

- * Higgs Factory digital MAPS ECal offers excellent performance.
 - Well defined EM shower structure allows simple algorithmic optimization of energy measurement.
 - Neural net studies may improve over "informed" algorithm.
 - * Excellent transverse containment & particle flow separation.
- * MAPS ECal effort underway for the SiD design.
 - * Digital pixels for ECal and tracker.
 - * An effort led by SLAC, with CERN, is progressing on the ideal MAPS design.
- Heat management is critical to successful operation.
 - Power pulsing for Linear Collider
 - * Need FCC solution design with cooling?
- * The digital ECal provides excellent performance for particle flow reconstruction.
- * Future simulation of full SiD detector with high granularity of MAPS ECal.
 - * What are the limits of transverse separation and measurement?

J. Brau et al., "The SiD Digital ECal Based on Monolithic Active Pixel Sensors," EPJ Web of Conferences 315, 03005 (2024)

Conclusion

- * Silicon-tungsten calorimetry offers potentially exceptional particle flow performance in a Higgs factory detector.
- * MAPS is advancing SiW designs over analog devices.
- * Further studies needed to understand optimized application of silicontungsten calorimetry to each collider concept (linear or circular).
 - * Each collider brings specific and different constraints.
- * We welcome colleagues who are interested in joining this effort.