Differentiable Full Detector Simulation of the IDEA New Baseline with Crystals

Wonyong Chung CalVision collaboration December 2024 – SLAC

New IDEA baseline

Beampipe

LumiCal

Vertex Detector

Drift Chamber

Silicon Wrapper

Endplate Absorber

Dual-readout Crystal ECAL

Solenoid

Dual-readout Fiber HCAL

Muon System

New IDEA baseline

Beampipe

LumiCal

Vertex Detector

Drift Chamber

Silicon Wrapper

Endplate Absorber

Dual-readout Crystal ECAL

Solenoid

Dual-readout Fiber HCAL

Muon System

New IDEA baseline

Beampipe

LumiCal

Vertex Detector

Drift Chamber

Silicon Wrapper

Endplate Absorber

Dual-readout Crystal ECAL

Solenoid

Dual-readout Fiber HCAL

Muon System

Differentiable simulation in dd4hep

- Fully parameterized idealized projective geometry
- Subdetectors defined in compact XML
- Physics config in steering file
- Customizable detector response function

Table 1. Input parameters for parameterized geometry construction.

Description	Variable Name	Value
Half Z-extent of the barrel	Z _B	2.40 m
Inner radius of the barrel	R _{inner}	2.25 m
Global number of phi segments	N_{Φ}	128
Nominal square face width of the front crystals	C_{fw}	1 cm
Nominal square thickness of timing crystals	$T_{\rm th}$	$3\mathrm{mm}$
Front crystal length	$F_{\rm dz}$	5 cm
Rear crystal length	$R_{\rm dz}$	15 cm
SiPM wafer thickness	S _{th}	0.5 mm

Table 2. Secondary parameters calculated from input parameters.

Description	Variable Name	Formula
Angular size of a single phi segment	$d\Phi$	$2\pi/N_{\Phi}$
Angular size of barrel region	Θ_B	$\operatorname{atan}(Z_{\rm B}/R_{\rm inner})$
Angular size of endcap region	Θ_E	$\operatorname{atan}(R_{\operatorname{inner}}/Z_{\mathrm{B}})$
Number of barrel segments in θ	$N \theta_B$	$floor(2Z_B/C_{fw})$
Number of endcap segments in θ	$N heta_E$	$floor(R_{inner}/C_{fw})$
Angular size of a single barrel segment in θ	$d heta_B$	$(\pi - 2\Theta_E)/N\theta_B$
Angular size of a single endcap segment in θ	$d heta_E$	$\Theta_E/N\theta_E$
Number of barrel segments in ϕ in a single phi segment	$N\phi_B$	floor $(2\pi R_{\rm inner}/(N_{\Phi}C_{\rm fw}))$
Number of endcap segments in ϕ in a single phi segment [*]	$N\phi_E^*$	floor $(2\pi R_{\rm inner}^*/(N_{\Phi}C_{\rm fw}))$
Angular size of barrel segments in ϕ	$d\phi_B$	$d\Phi/N\phi_B$
Angular size of endcap segments in ϕ	$d\phi^*_E$	$d\Phi/N\phi_E^*$

Projective gaps

- Different ways to handle phi and theta projective cracks
- **CMS**: uniform angular tilt offset in both

SCEPCal: linear planar offsets

٠

- Flat phi segmentations
- ➢ Global z-offset in theta

2911.2

X

Event displays – single photons (10-50 GeV)

- Have hit positions, have • geometry calculations
- Plot hits and redraw geometry •
- Lightweight, portable, runs in ٠ python notebooks

Detector response and synthetic data

- "Sensitive action" processes particle step interactions into hits
- "Sensitive action filters" apply cuts on steps to be processed
- Effectively acts as a detector response function
 - \blacktriangleright Default is energy deposit per step (1 keV)
- For optical photons, change to wavelength cut at track-level, not step
- New representations of same processes Synthetic data"
- Comparison for 10 MeV gamma shown
- Potentially useful as a new handle for PFA, studies ongoing
- Material properties also have big effect
- Many, many parameters to dial

wavelength (200nm)

Readout structure

- Each subdetector has separate readout collection
- Standardized hit classes
 - SimTrackerHit
 - SimCalorimeterHit
 - SimDRCalorimeter Hit
- Easy to spin up ad-hoc python classes or use something more official
- To dos:
 - Digitization -> RECO
 - Performance optimizations
 - High-quality sample production
 - FCC calorimeter workshop in spring

DREndcapTubesROScinLeft.cellID
DREndcapTubesROScinLeft.energy
DREndcapTubesROScinLeft.position.x
DREndcapTubesROScinLeft.position.y
DREndcapTubesROScinLeft.position.z

-- 🕺 SCEPCal_readout

- --- 🗽 SCEPCal_readout.cellID
- SCEPCal_readout.energy
- SCEPCal_readout.position.y
- SCEPCal_readout.position.z
- ---- 🔖 SCEPCal_readout.nScintillationProd
- 🔖 SCEPCal_readout.tAvgS

🕺 MC Particles 🕺_MCParticles_parents 🕺 _MCParticles_daughters MuonSystemCollection MuonSystemCollection_particle 🕺 SCEPCal_readout 🕺 SCEPCal readout contributions K SCEPCal_readoutContributions SCEPCal_readoutContributions_particle K SiWr BCollection X_SiWrBCollection_particle 🕺 SiWrDCollection X_SiWrDCollection_particle 🕺 Vertex Barrel Collection KertexBarrelCollection_particle KertexEndcapCollection 🔀 VertexEndcapCollection_particle 📈 GPIntKeys 🕺 GPIntValues 🕺 GP Float Keys 🕺 GPFloat Values Keys 🕺 🕺 🕺 GP Double Values 🕺 GP String Keys - 🔀 GPStringValues 📍 runs;1 🕐 metadata;1

More studies

- Bi-level optimization
 - Reconstruction vs. geometry parameters
- Detector response and synthetic data
 - More speculative studies
- Picking the right neural network for the detector
 - Long context transformers
 - Noise diffusion
 - Adversarial combination, etc.
- Let the physics case drive hardware development
 - e.g. HHH from single loop corrections to HZ cross section
 - Light-jet background apparently dominates
 - Work backwards to define detector requirements for desired precision
- Commit to full sim side-by-side comparisons for competing technologies for a given physics goal requirement
- Assess innovations in material/sensor properties
 - Lattice-oriented crystals
 - Chromatic calorimetry
 - 1000nm+ SiPMs
 - etc.

