FCC-ee Pre-injector Complex Studies

Brendan O'Shea / Lead Scientist / Advances Accelerator Research Department Head On behalf of S. Bettoni, P. Craievich and A. Latina 2024 FACET-II PAC & User Meeting

Stanford University

FCC-ee Higgs Factory

the

"An offshore Higgs factory, realized in collaboration with international partners, in order to reveal the secrets of the Higgs boson. The current designs of FCC-ee and ILC meet our scientific requirements. The US should actively engage in feasibility and design studies."

Exploring

Quantum

Universe

FCC-ee is aligned with P5 recommendation for an offshore Higgs factory

SLAC 2024 FACET-II PAC & User Meeting

FCC-ee Pre-injector

Points to be verified for electrons (for now...):

- Emittance versus bunch compression at nC charge (Test 1)
- Transverse jitter amplification and damping (Test 2)
- Bunch generation for top-up injection: charge scan from 0 to 5 nC (Test 3)
- Test of energy compressor (Bonus)

FACET-II in unique position to test feasibility of FCC-ee design

SLAC 2024 FACET-II PAC & User Meeting

[1] Phinney, Nan. "SLC final performance and lessons." arXiv preprint physics/0010008 (2000).
[2] Funakoshi, Y., et al. Journal of Instrumentation 19.02 (2024): T02003.
[3] P. Emma, SLAC-TN-05-042

[4] S. Bettoni, C3 Workshop

- History of high-charge beams
- Experience at SuperKEKB:
 - Emittance is 6x higher at half the charge
 - Overall luminosity is ~8% design value [2]
- SLC achieved 80% design charge, made up luminosity with optics improvements [1]
- LCLS operational experience lead to charge reduction [3]

FCC-ee Pre-injector Booster Injection Parameters

Parameter	Value	Unit
Norm. emittance (x, y) (rms)	<(2,20)	mm.mrad
Bunch length (rms)	~4	mm
Energy spread (rms)	0.1-0.15	%
Transverse jitter	1	sigma
Number of bunches	4	
Bunch spacing	25	ns
Charge variation	100	%

FCC-ee Pre-injector HE Linac (2.86-20 GeV)

N_bins	$\Delta arepsilon$ (mm.mrad)	ε (mm.mrad)	
8	0.6	1.6	a/ /
9	0.6	1.6	ĺ
10	0.6	1.6	
12	0.6	1.6	"

High charge beams have been challenging at times

SLAC 2024 FACET-II PAC & User Meeting

Emittance growth + bunch compression (Test 1)

- Norm. emittance out of the damping ring is expected to be 10 x 1 mm-mrad (H x V)
- Booster ring expects <= 20 x 2 mm-mrad

- Estimated emittance growth due to static effects:
 - misalignments is 60%
 - bunch compression (at 5 nC) is 20%

Emittance growth models have to be benchmarked to ensure FCC-ee performance

SLAC 2024 FACET-II PAC & User Meeting

Jitter Amplification (Test 2)

- Jitter Amplification (JA) simulations fulfill pre-injector requirements with a margin of 30% - validation necessary
- JA depends on short+long range wakefields
- Observed damping mechanism along linac

Jitter amplification computation:

- Single bunches distributed on a circle (in 10 degrees step size) injected to the line with different (x,x')
- Computed the area in the initial beam transverse phase space \rightarrow A₀
- Computed the area in the final beam transverse phase space $\rightarrow A_F$
- Jitter amplification, JA, is defined as the ratio of the areas \rightarrow A_F/A₀

$$JA = \frac{A_F}{A_0}$$

Long-range wakefield models developed for FCC-ee simulations will be tested

SLAC 2024 FACET-II PAC & User Meeting

Z. Vostrel and S. Doebert. "Design of an electron source for the FCC-ee with top-up injection capability." NIMA 1063 (2024): 169261.

Photoinjector performance when varying charge (Test 3)

- FACET-II Injector has produced up to 4.2 nC, with sufficient energy overheard to reach 5 nC
- Photoinjector simulations were used to seed inputs into linac simulations
- Initially investigate charge scaling with energy and beam size using existing methods, fill in a few points
- Redesign beam paths on S10 laser table to include SLM and Pockels cell, install Summer 2025
 - Run at 10 Hz, fill in plot

Bunch parameter	Simulation	Target
Transverse emittance	3.14 mm.mrad (rms) Assumed 3.2 mm.mrad (rms)	< 4 mm.mrad
Bunch length	0.96 mm (rms)	1 mm
Final energy	190 MeV	200 MeV
Energy spread	0.2% (390 keV)	< 0.5 %
Bunch charge	5 nC	5 <u>nC</u>

FACET-II can demonstrate FCC-ee photoinjector performance

SLAC 2024 FACET-II PAC & User Meeting

FACET-II parameters

- For emittance growth measurements (Test 1) can reach parameters by changing RF parameters
 - Reverse phase in L1 and L2 to decompress beam to 1 mm FWHM
 - Adjusting laser using existing knobs can get us 2x in laser pulse length, potentially more
- Charge variation measurements (Test 3)
 - Photoinjector previously run at 4.2 nC
 - Start by using existing mechanical methods to adjust energy and beam size
 - Upgrade to 100 Hz compatible methods: spatial light modulator and Pockels cell

- Jitter Amplification (Test 2)
 - Single bunch measurements possible without modification
 - Multibunch would require installation of 25 or 50 ns delay

Most proposed measurements possible with simple machine adjustments

SLAC 2024 FACET-II PAC & User Meeting

Conclusion

- The design of the FCC-ee pre-injector is a combination of many individually well understood methods
- Previous experience shows that models and simulations are most of the story, but not all
- Validation of parameters at the system level is necessary for project of the size of FCC-ee

Validate system level models in this experimental campaign

SLAC 2024 FACET-II PAC & User Meeting

Thank You!