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Collimation for Circular Colliders

Collimation of particle beams is a major challenge for high-luminosity colliders.
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Collimator challenges at SuperKEKB and their countermeasures
using nonlinear collimator
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In SuperKEKB, movable collimators reduce the beam background noise in the Belle II particle
detector and protect crucial machine components, such as final focusing superconducting quadrupole
magnets (QCS), from abnormal beam losses. The challenges related to the collimator, which were not
properly considered at the time of SuperKEKB design, have surfaced through experience with its
operation. In this paper, we report the collimator operation strategy in SuperKEKB. In addition, a
significant challenge of beam collimation due to the future increase in the beam background is
highlighted. We also discuss another issue caused by unexpected and sudden beam losses in the machine
that damage collimators, leading to weaker beam collimation performance and an increase in transverse
impedance. Furthermore, we introduce a novel collimation approach called the nonlinear collimator
(NLC) to address these challenges. We detail the concept of NLC and evaluate their effectiveness by
assessing the collimator impedance, beam background reduction, and impact on the dynamic aperture.
The possibility of using NLCs as absorber collimators to counteract events that damage the collimator is
also shown to be helpful.

/

The challenges related to the collimator, which
were not properly considered at the time of
SuperKEKB design, have surfaced through
experience with its operation.
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FIG. 5. Collimator jaw with a scar on the surface of the
collimator head due to the passage of the abnormal beam.

Collimator design is critical to achieving the luminosity goals of a collider.
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Collimator design is critical to achieving the luminosity goals of a collider.




Collimation for Linear Colliders

Collimation of particle beams dominates the length of the Beam Delivery System.
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Barklow, Gessner et. al. “Beam delivery and beamstrahlung considerations for
ultra-high energy linear colliders” JINST 18 P09022 (2023)

ILC BDS: 1 km of collimation!

Novel collimation schemes will reduce cost of a Linear Collider Higgs Factory

and enable a 10 TeV Wakefield Collider.




The Beam-Beam Flip-Flop Instability

Asymmetric scenario:
- “Weak” beam radiates more beamstrahlung photons than “Strong” beam.
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The Beam-Beam Flip-Flop Instability

Asymmetric scenario:
- Longer/shorter bunch lengths decrease/increase the beam-beam parameter.
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Beam-Beam Instabilities in the FCC-ee

Simulations indicate that the growth rate R R e R e

of the instability over ~10000 turns. %

At the z-pole, a few percent intensity e T ‘ —
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|s there a faster way to control the charge SR
of the colliding bunches? K. Nguyen et al. https:/arxiv.org/abs/2404.09012



https://doi.org/10.1140/epjp/s13360-022-02346-x
https://arxiv.org/abs/2404.09012

Science Drivers

1. Develop an “indestructible” collimator.

2. Reduce the length of the collimation system.

3. Provide bunch-by-bunch control of the beam charge.
4. Do all of that with the same tool?

e, ®

\ 4 %y
‘g = ;&:‘

“"LASER""

ol AR
= Ty o A



Proposal: Laser Control of Particle Beams

Laser Collimation
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Zimmerman, F. New final focus concepts at 5 TeV and beyond. Eighth Advanced
Accelerator Concepts Workshop. 1998.
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( Shot-by-shot control of electron bunch
L intensity in FCC.

dipole magnet

“A Ti:sapphire J-class kHz laser system is ready to be built today
[7-9]. Specifically, we consider a laser system operating with 1 J

F. Zimmermann, T. Raubenheimer IPAC 2022 pulses at 3 kHz (the revolution frequency), with an average power
https://accelconf.web.cern.ch/ipac2022/papers/wepost010.pdf of 3 kW, which translates to the same average laser power as for
I. Drebot, et. al IPAC 2023 https://doi.org/10.18429/JACoW-IPAC2023-MOPAQ74 LBNL's k-BELLA initiative (3 J at 1 kHz) [10].”
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https://accelconf.web.cern.ch/ipac2022/papers/wepost010.pdf
https://doi.org/10.18429/JACoW-IPAC2023-MOPA074

E320 is the backbone of this proposal

Leverage the E320 infrastructure at
FACET-II to provide an R&D platform

for:

e Bunch-to-bunch laser intensity
control.

e Halo collimation.

e Diagnostics to demonstrate
collimation and control of high
energy beams.

FACET-Il is the only User Facility in the
world that combines 10 GeV beams with
high-power lasers to accommodate this

type of R&D.
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* Main diagnostic for the scattered electron spectrum
* Much more sensitive than LFOV, further improvements ongoing

E-320 Progress in FY24 and Plans for FY25 Reis/Meuren 14
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Linear Compton Scattering

Much of this R&D assumes Linear Compton Scattering.

We prefer long electron beams and stretched laser pulses (o, = 200 ym, o, = 0.66 ps)

Assume 100 mJ laser pulse energy.
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The expected cross-section is 550 millibarn.
There are approximately 4 X 10/ photons per pulse.

The interaction probability is 10 - 102 depending on geometry.
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Phase 1: Demonstration of a fast feed-forward system

Goals: \ i t
e Mimicfeedback mechanismfor FCC-ee ___sp--- L SRR s YNy
by demonstrating shot-to-shot feed fe6m
forward control. Pr—

e Deploy halo characterization diagnostic.

|. Drebot, et. al IPAC 2023 https://doi.org/10.18429/JACoW-IPAC2023-MOPAQ74

Hardware:
@) . 10m ~:2r?1:1'5r:“ ~6.5m
e No change to E320 setup. o, s
e Electronics for fast Pockels cell control. 8 sc’?iii‘;;g%, e B
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M. Turner, et. al Phys. Rev. Lett. 122, 054801 (2019)
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https://doi.org/10.18429/JACoW-IPAC2023-MOPA074

Phase 2: Halo Collimation

Goals:

e |Interact beam halo particles with an

anular laser pulse.
e Measure jitter tolerances and effects.

Hardware:

e Laguerre-Gauss or High-Order Bessel
Optics.
e Head-on laser interaction.

e [ BG _LFOV orother sensitive detector.

Expected signal:
e 7X 103 scattering events per pulse.
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Gessner, S. et al. Demonstration of a positron beam-driven hollow channel plasma
wakefield accelerator. Nat. Comm. 2016.

FY25 upgrade

LBG_LFOV upgrade (Knetsch)
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Phase 3: Alternative Schemes

Goals:

e Reducerequired laser pulse energy
needed for collimation and control by
utilizing nonlinear compton scattering
and/or alternate geometries.

Hardware:

e 90°0OAP
e Cylindrical lens
e Tilted phase front

Expected signal:
e Dependsonscheme

Tilted Phase Front
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4 Nonlinear Quenched Regime
Operate in a nonlinear regime but still induce a
binary interaction.

“Quantum Quenching of Radiation Losses in Short
Laser Pulses.” C. N. Harvey, et al. Phys. Rev. Lett. 118,
105004 (2017)
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Conclusions

The R&D topics covered by this proposal have the potential to improve the
performance and reduce the cost of future Higgs Factories, while paving the
way towards a 10 TeV Wakefield Collider BDS system.

- The proposal is well-aligned with P5 Recommendations 2.c and 4.a.

The E320 experiment enables rapid implementation and a clear path to results
for this proposal.

- The technical risk for Phases 1 and 2 is low.

The implementation of a Halo Monitor will be broadly useful for the facility.
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