Control and observation of trajectory mixing and wakeless regime in plasma accelerators

Principal Investigators:

Sebastien Corde, SLAC and Ecole Polytechnique Michael Litos, CU Boulder Claudio Emma, SLAC

20 November 2024

Outline

- Preliminary results from E-200 and E-300 in beam-ionized helium plasmas
- Experiment goals and project structure
 - Beam-ionized plasma sources and current profile control
 - Advanced shadowgraphy in dark mode for visualisation
 - Physics study of plasma wave damping and wakeless
- Synergies and possible evolution

Introduction and motivations for the study of trajectory mixing and wakeless regime

Intro and motivations

Infinitely-wide plasma

Basic beam-plasma interaction with short, small and dense beams:

 n_b/n_0

0.42

Infinitely-wide plasma

Oscillating Wakefield in the wake of the beam

here in the blow-out regime referred later as standard PWFA regime

Finite-width plasma

<u>Finite-radius plasma column scheme for positron acceleration:</u>

Synergy with E333 experiment

Finite-width plasma

Example of beam-ionized plasma:

Synergy with E306 experiment

E-200 and E-300 preliminary results on wakeless

E-200 results: helium vs argon beam-ionised plasma sources

He up to 64 Torr

from wakeless to standard PWFA regime

No acceleration CEGAIN (log scale) CELOSS (log scale) 31.132 20.514 3.747 (E 15.297L) 14.102 3.051 2.915 12.196 2.791 11.424 -20 10.743 2.573

Electrons decelerated from 20 GeV to 2.5 GeV, losing nearly 90% of their energy

E-200 observations:

- Pure He: never observed any acceleration despite full energy loss, tested up to 64 Torr
- •He-Ar mixture at 32 Torr: acceleration observed above 40% Ar

PWFA regime

Ar 16 Torr

- No acceleration up to 64 Torr, corresponding to:
- $n_p \simeq 3 \times 10^{18} \text{ cm}^{-3} \text{ and } \lambda_p \simeq 20 \,\mu\text{m}$
- Reeping high density ($\kappa_p \sigma_z \gg 1$), going to lower ionization potential (24.6 eV for He to 15.8 eV for Ar) leads to wider plasma and transition from wakeless to standard

ation

Nature Commun. 7, 11898 (2016)

E-300 results: compression scan in beam-ionised helium

- Experimental set-up for compression scan
 - Laser heater configuration to enhance ionization/interaction
 - Measurement of bunch length in Sector 14 (BLEN S14) used as a feedback set point
 - BLEN S14 set point is scanned to vary beam compression

Shots sorted by bunch length at Sector 14

Experiment goals and project structure

Goals and project structure

High level goal: control and observe trajectory mixing/plasma wave damping and transition from standard PWFA to wakeless.

How?

Ontro,

Develop and use advanced tools

Part A Controlling drive current profile and beamionised plasma sources

To explore physics

Part C Plasma wave damping and wakeless

Part B Advanced shadowgraphy in dark mode for direct visualisation

Part A — current profile and beam-ionised plasma sources

Part B — advanced shadowgraphy in dark mode

How to observe?

Dark-field shadowgraphy under development for E305 at plasma densities above 10¹⁸ cm⁻³, aim to reuse and adapt for densities below 10¹⁸ cm⁻³.

Ar plasma density ~10¹⁸ cm⁻³

Part B — advanced shadowgraphy in dark mode

How to observe?

Dark-field shadowgraphy under development for E305 at plasma densities above 10¹⁸ cm⁻³, aim to reuse and adapt for densities below 10¹⁸ cm⁻³.

Timed with respect to other lasers/ebeam in He 8 Torr during oven cooldown on Monday 11/18

Electron propagation axis (pixel)

14

Part B — advanced shadowgraphy in dark mode

Part C — physics study of plasma wave damping and wakeless

 Trajectory mixing: take snapshots of weakly and strongly damped plasma waves when varying current profile and plasma radius.

 Wakeless: take snapshots showing disappearance of plasma oscillation and providing direct visualisation of waveless wake.

	- 0.8
	$/I_0 \left[10^{-6} \right]$
	- 0.4 Intensity I
	- 0.2
	- 0.0
٦	front of
٦	beam
	- 1.0
	- 0.8
	$/I_0 [10^{-6}]$ 8.0 -
	$100 ext{ Intensity } I/I_0 [10^{-6}] ext{ 10^{-6}} = 8.0 ext{ 10^{-6}}$
	- 0.8 - 0.6 - 0.4 - 0.2

Synergies and possible evolution

Synergies and possible evolution

- Provide new tools that can be leveraged by E306 (ion channel laser) and E333 (positron acceleration in finite-radius plasmas)
- Advanced shadowgraphy in dark mode: provide a straightforward way to verify and adjust conditions to be in the right regime
- Beam-ionised plasma sources with current-profile control can be used for early physics insights, even if performance is not optimised.
- Possible evolution (high risk/high gain): controlled current spike at the beam front could make beam-ionised plasma sources very competitive, free of overlap shot-to-shot fluctuations.

The nk you for your attention

wakeless

experimental shadowgram ???