E338 (PAX) Progress in FY24 and plans for FY25 FACET-II PAC Meeting

SLAC National Accelerator Laboratory November 19th, 2024

PIs: Claudio Emma, Ago Marinelli

Stanford University

PAX concept: a Plasma-driven Attosecond X-ray Source

E338 Experimental goals at FACET-II

Science Goals

- 1. Demonstrate post-plasma sub-fs compression of e- beam
- 2. Measure + characterize XUV CSR for compressed e- beam down to 100 nm
- 3. Using plasma-injector, compress + measure coherent XUV at 50 nm

After Plasma

After Chicane

E338 Overview of experimental installation/diagnostics

Plasma Sources

- Gas Jet ne = 1e18 – 1e20 cm^-3
- Li Oven ne = 1e16 cm^-3
- Static fill

Radiation setup detects broadband spectral content to map bunching factor of fully-compressed e-beam

SLAC FACET-II PAC Meeting, November 19, 2024

E338 Overview of experimental installation/diagnostics

Chicane + bypass line design

- Li Oven $ne = 1e16 cm^{-3}$

- Static fill

Radiation setup detects broadband spectral content to map bunching factor of fully-compressed e-beam

E338 Overview of experimental installation/diagnostics

SLAC FACET-II PAC Meeting, November 19, 2024

E338 Collaboration

E338 Diagnostics commissioning progress

Radiation setup used to measure fs current spikes from laser heater shaping

E338 Collaboration

E338 Diagnostics: XUV signal

- (1) XUV spectrometer calibrated, aligned and tested with UV diode
- (2) No signal from e-beam observed on XUV spectrometer yet, likely due to lack of e-beam bunching
- (3) Risk mitigation strategies
 - Increase collection efficiency from YAG screen to camera (fiber optic tapers, move camera directly in front of YAG screen)
 - Direct XUV detection (Andor XUV/x-ray camera)

SLAC

FACET-II PAC Meeting, November 19, 2024

E338 Chicane + bypass line design

- Chicane + bypass line engineering design completed
- Chicane sits on a mover table remotely insertable in beamline
- R₅₆ < 150 umat 10 GeV
- Space for small interaction chamber downstream before dump dipole.
- Magnets + bypass line ordered, expected 03/2025, installation summer 2025

Chicane will be available for experiments starting Fall 2025

FACET-II PAC Meeting, November 19, 2024

E338 Collaboration

PAX Progress in FY24 and plans for FY25

K. Swanson

Post-chicane chamber

Chamber can support:

- Gas jets
- Solid targets
- OTR screens
- Undulators
- Others?

Compact undulator

Stakeholders consulted during design process

Post-chicane chamber will be available for experiments with or without compressed beams

SLAC FACET-II PAC Meeting, November 19, 2024

E338 Collaboration

Experimental plans FY25

Experimental plans FY25

Beam time requests before chicane:

- Tomographic measurement of energy chirp (collaboration with E-300) see e.g. <u>https://d-nb.info/1224296974/34</u>
- Cathode shaping to make sub-fs spikes

Zhang, Zhen, et al New journal of physics 22.8 (2020): 083030.

S. Schroder, et al Nature Comm. (2020) 5984 (2020)

Towards time-domain experiments

Spectral measurement:

- qualitative information (single spike vs amplification of shot-noise)
- time-domain information is model-dependent

Towards time-domain experiments

Spectral measurement:

- qualitative information (single spike vs amplification of shot-noise)
- time-domain information is model-dependent

Time-domain measurements using photoelectron streaking:

- direct time-domain information (correlate time/angle or time/energy)
- angular streaking using external laser
- synchronized experiments using beam-generated radiation (can be linear streaking)

Summary

- Path towards single/few cycle soft x-ray pulses.
- Staged demonstration experiment is underway at FACET-II.
 - plasma compression of FACET e-beam ~ 100 nm bunching (CSR)
 - compression of plasma-generated e-beam < 50 nm (CSR)
- Radiation diagnostics installed in tunnel and commissioned.
- Long term vision is to outline a path forward dedicated to plasma-driven attosecond science experiments.

PAX is moving steadily from concept to experimental realization

Collaborators

- **SLAC**: R. Hessami, K. Larsen, R. Robles, K. Swanson, C. Emma, A. Marinelli, FACET-II AARD & Beam Physics groups
- UCLA: A. Fisher, P. Musumeci, C. Zhang, C. Joshi, K. Marsh
- Experimental Collaboration with: E-300, E-304, E310

Funding Sources

This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC0276SF00515. This work was also partially supported by the DOE under Grant No. DE-SC0009914. The OSIRIS simulations were performed on the National Energy Research Scientific Computing Center (NERSC). C. E. and K. S. acknowledge support from the Department of Energy Early Career Research Program

Thank you for your attention

(E338) Shifts since last PAC

Beam time: 2 shifts + parasitic time

What worked

- Installed all radiation diagnostics in the tunnel. Commissioned UV-Vis spectrometer + remote alignment of XUV spec.
- UV-vis spec has been useful for e.g. E300 He wakes, E304, LH shaping
- Chicane PO awarded, timeline for delivery ~9 months expected installation summer 2025

What we can improve

- UV-vis spectrometer timestamping with DAQ
- Increase spectral range of UV-Vis spectrometer (190-1090nm spectrometer purchased)
- No 50-290 nm radiation seen (yet) on XUV spectrometer

PAX first E300-like experiments: tolerances to beam emittance and SES

Chicane electron deflection and trajectories at design R56 = 100 um

20