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E331 Science Motivation

Major limitations in the way accelerator tuning is done: o
* Piecemeal tuning of subsystems (known to be sub-optimal)
* Indirect use of high-dimensional diagnostics (e.g. images)
* Often a lack of accurate online models

—> Potentially limiting factors in control of extreme beams

o within the window (MeV)
o

Source: Ji Qiang

linac optimization
with one optimal
injector solution

using global machine
optimization

'\o'\.oﬁcﬂ.’.“-. P ..

More global view can enable better control: P\
* Fully exploit unknown system-wide sensitivities + nonlinearities
* Faster switching between setups (if using global representation of
machine)

 Better handling of parameter tradeoffs (e.g. jitter, matching,
longitudinal phase space)

Comprehensive, system-wide control is likely to be a key factor in
improving custom control of extreme beams, but this is a difficult task

2. 7 =3 = .4 0.
- fraction of particles in the window

1(A)

5,000 ——————————
0

50 100 150 200 250
t(fs)

A. Marinelli, et al., Nat.
Commun. 6, 6369 (2015)

Time (fs)

A. Marinelli, IPAC’| 8



Nagabandi, et al., 2019

Neural Network Reinforcement Learning

RL can help address a different set of needs than BO:

target beam
parameters or images

*  Use global machine information, more historical data

*  Treat as a dynamical system (many time-dependent
processes/feedbacks + drift)

present machine .
new machine

*  Address demands for fast dynamic control from users SECHIES settings St
gun L1X Gas detector
Suitability of accelerator tuning problems for RL: VCC sl Lodina L3-linac XA
* Many variables, multi-modal signals (images, scalars, time series) 20NV SEa36ed  14GeV  undulato
* Continuous state/action spaces (similar to robotics)
* Have physics models/simulators for many problems . — —
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Tuning approaches leverage different amounts of data / previous knowledge
- suitable under different circumstances

less <

assumed knowledge of machine » more
4 N\ _ ) " - N
Model-Free Model-guided Global Modeling +
Optimization Optimization Feed-forward Corrections

\/ J. Kirschner

Observe performance change after
setting adjustments Update a model at each step Make fast system model

- provide initial guess (i.e. warm
start) for settings or fast

- estimate direction or apply

. , - use model to help select the next
heuristics toward improvement

point .
\_ ) \_ ) \_ compensation )
gradient descent Bayesian optimization ML system models +
simplex reinforcement learning inverse models

ES Model-based warm start

General strategy: start with sample-efficient methods that do well on new systems, then build up to more data-

intensive and heavily model-informed approaches.
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Many successes
with Bayesian
Optimization

(+ improvements)

Multi-objective
Bayesian Optimization
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Iteration
Algorithms being implemented/distributed in Xopt: https://github.com/xopt-org/ @t

Comprehensive review of advanced BO for particle accelerators: https.//arxiv.org/html/2312.05667v2



https://github.com/xopt-org/
https://arxiv.org/html/2312.05667v2

Fast-Executing, Accurate System Models

ML models are able to provide fast approximations to simulations

Accelerator simulations that include nonlinear
(“surrogate models”)

and collective effects are powerful tools, but
they can be computationally expensive Neural Network

-3

Simulation Measurement

MeV (relative]
MoV [relative)

Linac sim in Bmad with collective beam effects ~

energy (MeV)

o - B P & L
fs. {relative) s [relatioee)

Scan of 6 settings in simulation
Simulation

EECCEETC

L1 Phase 40 -20 -25.1 deg
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. s »

x - =z - ‘i;_-
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0 MM 4n T4 W v . Tuq |J?-| e
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Loagitudinal positiond jum)
' L3 Voltage 50 110 100 percent )
. Qiang, et al, PRSTAB30 < ms execution speed
154402, 2017
I 10° times speedup
10 hours on thousands of Edelen et al.. NeurlPS 2019

cores at NERSC!

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity

online prediction, tracking of machine behavior, and model-based control


https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

Fast-Executing, Accurate System Models

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Bringing
simulation tools
from HPC systems L15) ; 13
to online/local 8Closomev B243Gev  14Gev undulator

compute

Meural Netwark

-

MeV (relative]
MoV [relative)

Linac sim in Bmad with collective beam effects ~

O M 8 M oW o X s 8 I
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Scan of 6 settings in simulation
Simulation
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Experiment planning < ms execution speed

Online prediction 10 times speedup
Model-based control
Edelen et al., NeurIPS 2019

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity

online prediction, tracking of machine behavior, and model-based control


https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

online
measurements

Example: Warm Starts from Online Models
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drifting inputs quads for flat
-
— beam transform = T,

~
S,
N,

Gun RF read backs
(phase and amplitude)

Virtual Cathode Image Beam Statistics on Screen: | “‘. Pareto
Statistics (spot size, intensity) .' front
Other Magnet Settings Oy ~ o K_“
(solenoid, steering) pixel intensity \ y T IR
\

L / X,y centroids I Oy
Flat Beam Quads (3) 4 /
i
~ s /
~— Multi-Objective Genetic Algorithm

Round-to-flat beam transforms are challenging to optimize
- 2019 study explored ability of a learned model to help

Trained neural network model to predict fits to beam image,
based on archived data

Tested online multi-objective optimization over model (3
qguad settings) given present readings of other inputs

Used as warm start for other optimizers
Trained Reinforcement Learning agent and tested

1 A

B M\

(A}

Counts (normalized)

0.00

Can work even under drift

0.157

0.10+

Train
Test (2nd test)

Train 0.125
7z —_—~
1 o
1 /" Test (2nd test) 8 0.100
I =
o € 0075
i distribution =
Vi ) £ 0.050
I shift E
I O 0.025
/ 0.000
! ! : . 50
10 15 20 2% 30

Laser Spot o, (pixels)

NN start point BN .
initial solution

from neural
network model

hand tune

55 60 65

Gun Voltage (MV)

fine-tuning

Hand-tuning in seconds vs. tens of minutes

Boost in convergence speed for other algorithms




Drift / Distribution Shift is a Major Challenge .| T K

E— | | Ay - o
Y SR
- w ol I 34 W
Many sources of change over time: 3" N A | "
« Deliberate changes in beam configuration (e.g. beam a " Bt Sowniont o *f
‘ - Wer | 008 ﬁ‘: ?.
Charge) ’ 200 400 600 800 0730 120 10 1% 180 0 170
. o . o o, o, 0 . . . Shot number Bunch Sepacation [um|
 Unintended drift in initial conditions (including in Shotnamy B. O’Shea
unobservable variables), diurnal temperature/humidity drive laser
changes, etc
* Time-dependent action of feedback systems
175 Measured
Predicted (Ensemble Mean)
150
125
L D TSA g v
75
50 < unseen reglon
20000 40000 60000 80000 100000

Sample Number (increasing time)

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally



Al/ML R&D for complex

E331 Science/Technical Goals [ system control

[ high-impact science cases ]

17

e
Main goal: develop and demonstrate measured
methods to leverage global learned system b e
responses to aid fast, high-quality tuning control settings

policy

cavity phases, amplitudes
solenoids, quadrupoles

of beams under challenging conditions and
aid switching between setups

present
settings +
(build up incrementally to machine-wide state , @ " BC20
. inputs B
neural network-based reinforcement : Lis a ‘- ‘- ’TCAV
I earn / n g) Ex'{;'é'ra.lni?ﬁ:f As;ea
SLAC Linac Tunnel (Sectors 10 — 19) W-Chicane

Science/Technical Goal Target Time Definition of Success
Evaluate methods for high-dimensional, high-quality 3+ years  Automated tuning of transverse emittance and longitudinal
control over beams using learned responses, starting phase space: faster, higher-quality tuning than standard
with small-scale problems + single-bunch mode methods, new capabilities in control
High-quality control over extreme beams and plasma 3-5years Same as above but for more challenging setups/target
experiments, two-bunch mode beams

Deliver algorithms and interfaces for regular operation continual  Tools incorporated into regular use + transitioned to
operations

Staged approach gradually increases complexity, goes from sample-efficient methods that learn on-the-fly to comprehensive model-

based methods that use variety of machine data - success determined by improvements in tuning quality and speed, and TTO



E331 Diagnostic and Observables

Y =TCAVs = bunch length pyros
vee = Edge radiation cameras
RF Gun = SYAG
Q= 2nC
L2 BC14 L3 BC20  Experimental Area
A
) - - .
Em 135 MeV E=335MaV  E=45GeV E = 10 GeV
ISR | =400 A 1=35kA | m 20300 ki

* LPSdiagnostics (e.g. injector + downstream TCAVS)

* Emittance measurements, x-y beam sizes from wires, transverse phase space from screens

* Upstream inputs: virtual cathode camera, QE map once available, laser diagnostics

* Readbacks from settings (gun solenoid, gun and linac phases/amplitudes etc)

* DAAQ: scalar diagnostics (e.g. BPMs, toroids, RF readbacks, BLEN pyros) and multiple image diagnostics (SYAG, EOS, TCAV)

* Plasma diagnostics

- Flexibility in E331 enables adaptation to installation / commissioning schedule for different diagnostics

Numerous diagnostics to inform tuning or be used as tuning targets



E331 Practicalities and Infrastructure

* Integrated our Xopt software into FACET-Il control system
- Aids algorithm transfer between experiments; easier to test new algorithms
- Xopt being used very broadly in accelerator community

* Have improved Badger user interface. Next need to add FACET-II tuning cases
(e.g. sextupole mover tuning, injector emittance tuning)

*  Found computing is a major bottleneck
- 20-40x slower per compute step on controls network than laptops

- Working on several solutions: (1) GPU on controls network, (2) HPC integration
with S3DF (broader laboratory infrastructure)

- Addressing this has been an extremely slow process due to administrative,
funding, and engineering personnel constraints (above the FACET-II level); have
now (FY25) gotten better laboratory support for this

* Modeling infrastructure (need for model-based control / RL)

- Been making progress on start-to-end simulation tools and infrastructure for
online ML and physics model deployment

- Want improved model accuracy wrt real machine behavior + to have reliable
software infrastructure for online model deployment

Text input

*

Simulation

W
Wy
W

Badger GUI

t

Python API

# create Xopt object.
X = Xopt(YAML)

# take 10 steps and view data

Ny

Control System

for _ in range(10):
X.step()

X.data

FACET-II Injector model

running online using
LUME-IMPACT

Variety of tools for online modeling and optimization. Integration of these into FACET-II is progressing.




E331 Progress 2023-2024

* Several data-efficient methods for tuning at FACET-Il ready for TTO

- Injector emittance tuning = mostly ready for transition to operations; needs some
additional software/interface work and robustness testing

- Sextupole mover tuning (beam size, plasma parameters) = have transitioned to other
user experiments; need to add to Badger Ul to aid ease-of-use

- Automatic “smart sampling” for characterization = ready for general use; need to add
to Badger Ul and consider DAQ interface

* First transfer to other experiments with E300 for sextupole tuning (see Chan’s
talk yesterday)!

- Initial development with E331 (8 sextupole movers to minimize S20 beam size, then
expanded to eloss and energy gain)

- Helped FACET-II/E300 team get set up with the algorithm and provided initial guidance
during shifts; joint iteration on how best to set up metrics, data processing

® Progress on ML-based model calibration methods (getting simulation to match
machine in a data-efficient way)

160 A

— XIS
yrms
~-= geomean

Beam Size (um)
] I~ =
8 o [~} o

3

0 5 10 15 20 25 30

n=14.8% [ 1=41.8%
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Change (nCGeV) X (s Change (nCAGeV)

0

Algorithm developed/tested in E331
transferred to E300!



Bayesian Optimization and Characterization of Injector

, L o _ _ Use of BO results in a local model that
* Bayesian optimization on the injector with up to 10 variables

* Extensive data obtained from characterization studies at 3nC, 2nC, and 700pC

can be interrogated - visualization
being incorporated into Badger

4 Adjusted Settings N\ 8 ] ] o x
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Quadrupole Strength (kG)

BAX enables a paradigm shift in how optimization problems with complicated scans or other indirect measurements are handled

Demoed at FACET-Il injector = now working to get set up for routine use in operations



10.1088/2632-2153/ad169f

ML for Efficient Characterization

Setting changes on 10 variables (solenoid, bucking coil, corrector and matching quads)

» X-y emit,
—__ match,
and
e e beam

E ﬁ i SS'l'rAg images

Automatic Exploration -
(constrained to useful values
of emittance and match)

<

Solenoid + Quadrupoles
Las:

Faraday Cup
adrupoles
Quadrupoles

LOa

Quadrupoles
0o

é Cathode
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= ~!
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>
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[ ML Models of Injector ]

-
FACET-Il Injector

* Used Bayesian Exploration for efficient high-dimensional characterization (10 transverse phase space

variables) of emittance and match at 700pC: 2 hrs for 10 variables compared
to 5 hrs for 4 variables with N-D parameter scan

* Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

Predicted Measured

* Example of integrated cycle between characterization, modeling, and . . .
optimization 2 now want to extend to larger system sections and new setups N

Have used extensively now at FACET-Il for injector to aid model calibration studies

- now want to help expand to other experiments and use downstream in linac



Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets)

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine performance

a ML model allows fast / automatic exploration of error sources in high dimension

Example: calibration
offset in injector
solenoid strength found
automatically with
neural network model
(trained first in
simulation, then
calibrated to machine)

adaptable calibration

transforms _
=

injector
settings

laser image
transverse phase space

frozen neural network
layers trained on
simulation

;I
output beam
scalars

longitudinal/

Inputs

Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid

LOA phase

LOB phase

SQ quad

CQ quad

6 matching quads

Outputs

Beam size (x,y)
Emittance (x,y)
Bunch length

mm)
o =
P s>

RMS Beam Size (

o
©

RMS Beam Size (mm)
o

=
N
)

=
o
!

o
o
!

| calibration

—— 0oy NN
e 0o, IMPACT-T
+ 0y meas.

Without

0.45 0.46 0.47 0.48 0.49 0.50
Integrated Solenoid Field (kG-m)

l

1 With calibration

—— 0x NN
e 0, IMPACT-T
+ 0y meas.

0.214 0.215 0.216 0.217 0.I48 0.I49 O.ISO
Integrated Solenoid Field (kG-m)

Speed of ML models enables rapid identification of error sources between idealized physics simulations and real machine

- path toward an accurate system model suitable for model-based control and training reinforcement learning control




Model Calibration

Multi-fidelity calibration

Evaluation

GP Model Update

1 —— Posterior mean
Posterior confidence region
@ Training data
- Ground truth

f: objective function 051

VST IS I x: opt. variables « 001
s: fidelity parameter -0.51

Y 4

* Want methods that scale efficiently to high dimension
(e.g.injector + linac), are minimally data hungry, and give
reliable uncertainty estimates

Neural network approach alone is not sufficient!

* Now have better simulation pipeline and working on
several methods with the FACET-II injector and linac

- Neural network models (e.g. previous slide)
- Bayesian approaches (e.g. multi-fidelity optimization)

- Differentiable simulations (see Ryan’s talk today)

Gun Phase 30 31.9
Degrees Degrees

Gun Amplitude 120 118.99
MV/m MV/m

Pulse Length l1ps 0.847 ps

-4 -2 0 2 4 -4 =2 0 2
E. Cropp L . .
Preliminary, low-dimensional example of
o1 oA multi-fidelity calibration for injector
LS | = l-\\-o

6

o o | A
E oo tr
)—ns 0
o B -
0 1 2 3 4 5 o N
20 .
X 32 3 5 1 3 3 0w
x (mm) pC/mm.
5
We
o?
] \//\
1.0
0 1 2 3 4 5 6

Acquisition Function Computation & Optimization MER LY 2 E ¥ e

Differentiable physics

simulation example

True offsets Predicted offsets

—n
2

r3
=== true offsets

offsets (mm)

— 6
— 92
03
=== true tilts

tilts (mrad)

10°
@ 1072 %
o £
10~
0 1000 2000 3000 4000 5000
n_iter

x (mm)

J.P. Gonzalez-Aguilera https://accelconf.web.cern.ch/ipac202 3/pdf/WEPA065.pdf



E331 Next Steps: Neural Network Prior

Combining system models with BO = important for scaling BO up to higher-dimensional tuning problems

Good first step from previous work: use neural network
system model to provide a prior mean for a gaussian
process model

- prior mean

acquisition

™

System ’

Used LCLS injector surrogate model for prototyping N A — — Constant Prior
variables: solenoid, 2 corrector quads, 6 matching quads data \l — EE ”=‘g-£1l' mg = 1;’ mm
. . . . . . . — , = 0.4, =l1l.Z2mm
objective: minimize emittance and matching parameter 2 “ —— NN, r= 0.7, MAE=0.6mm
regular Bayesian £ \ —— NN, r= 1.0, MAE=0.0mm
.. . € \
: = Z - \
Even prior mean I optimization "
. £
models with £ s , o 14 =
b " £ prior mean from models ~e
substantia g 10 with different fidelity = —_] —===_.
inaccuracies £ s, W y —
. . £ -15| —— surrogate (Ground Truth) 04
provide a boost in £ —— Model2 . . . ; . .
. e @ -20
initial convergence 0.460 0.465 0.470 0.475 0.480 0.485 0 10 20 30 40 50
SOL1:solenoid field scale (kG*m) Step

Want to apply this to with sextupole tuning, injector and linac tuning, etc at FACET-Il - would help significantly
with high-dimensional tuning

Should work well in cases where machine drifts but qualitative response is similar

https://arxiv.org/abs/2403.03225

o AL h
o b M\

J/arxiv.or, 2211, 2


https://arxiv.org/abs/2211.09028
https://arxiv.org/abs/2403.03225

E331 Next Steps:
Longitudinal Phase Space Tuning

Example from LCLS
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beam $ _0.50 %
3 - 0.05
-0.75
s 0.00
Optimizer (e.g. BO, RL) - T 3 3 z = 0 3 a6 10
target fteration Iteration
beam new machine
settings 2 0.00
n gun L1X o A -0.05
‘ L1S. L2-linac L3-linac § —0.10 5
8Clsomev B243Gev  14Gev  undulator - 8 208 . e
E ' - 20% < 253
3 -0.25% g‘
Demonstrated Bayesian optimization for LPS tuning L x
on LCLS for several variants of problem setup: S ——— 2 ~
* 2 peak current settings, 6 phases and amplitudes 2 s S
... £ 15 v :
* Target phase space, minimize energy spread and : 2 B e ey
: | o
bunch length 3 H8
§ o 0.5

- Want to expand on this work at FACET-II

- Data gathered during BO-based tuning will be
useful for next steps (model calibration, neural
network control policy + reinforcement learning)

1 A

B M\

(A}

584

2247

3578

BC2 Peak Current Setting (A)

Measured

Reconstructed

““‘{{““\ ““““““
““||||“‘\ ““““““

&

Target latent
reconstruction

Target and final
latent reconstruction

Target and final raw
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Next steps: drift compensation £ o T S
(- B E 03 o*
§ 10 gnzh Ot ‘o ::: g
o 02| e .k.. 4 F
g S0F | ‘é{Q‘cri'éébJaiBﬁl §°'5' S % 08
= + RMS Jitter 01 . :; o "
Synthetic problem 20 a0 ex  so0 " el »
Shot number 0750 120 130 140 180 10 170
1.00 model mean Bunch Separation [um)
|
0.75 —--~- ideal path

0.020 LCLS example: FEL pulse intensity

0.50 W ;
. i | |

| |

0.25 0.015 : |

x 0.00

Time Dependent Bayesian
Optimization

0.010
-0.25

-0.50 |
0.005 |

-0.75

LCLS Chirp Phase

-1.00

0.000

10 20 30 40 50 60 70 80
unix time +1.7309205e9

Time dependent BO, contextual BO, and model-based RL are all good candidates
Would like to help address the major pain points for other experiments wrt drift

o1 A
T M



Next plans for E331

Expand tuning scope being addressed with Bayesian approaches:

- Incorporate information about upstream variations (e.g. charge, bunch
length) to aid compensation for drift

: MW "

Bmch Separation
+ RMS Jitter

o
C

Bunch Separauo'\ [um]
)
o

o

- Expand to emittance growth minimization for linac e ol
=hol number
-  Expand sextupo]e mover tunir)g w/ eloss and energy gain to additional = .
controllable variables across linac 0t
. . o . \L‘ 03 c.' ey
- Expand to longitudinal phase space tuning (e.g. dynamic control over two T L 4 g
. £ 028 » .‘ "a ™
bunch separation) I& g‘ . 28 i §
- Expand to jitter reduction? 8o B * ,
' ] . ] 01 & :. o Measured Simulated
- Continue expanding to multiple plasma output metrics 008 o’ W g .
; ﬁ.: > 04 screen images

10 120 120 140 180 0o 1
Bunch Sepecation [um|

Will use trust region BO, neural network prior + BO, contextual BO, time-

dependent BO
E,=0.135GeV  E =0.335GeV  E =4.501GeV  E,=10.000GeV s
. . 2inj BC1 8lBC2 3l C Rrive
Incorporate Badger Ul into FACET-Il and expand work with other 3 ‘° : £ \ §21 £ 11w
experiments to leverage and improve these optimization tools, explore 3, 5 %i - 1 3 o A E | ﬂ
high-impact use-cases w - ‘

Finish system model calibration studies with injector and linac, expand
to adaptive model calibration and use online for tuning

Final Focus &
Experimental Area

(1P)

Continue development on reinforcement learning approaches for more
comprehensive continuous control, fast switching between setups



Desired facility upgrades

Computing
- GPU integration into controls network
* GPU purchased / on-site = now need to add to network (EED)

- Working on getting read/write links between S3DF (on-site HPC), a different GPU
system, and the controls network

* TID promises an initial solution this week

Expect algorithms to be 20-30x faster per iteration once better compute is established

- critical step (right now computing is a major bottleneck for experiment time and TTO)

(%)
I
)
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Thanks to the team involved in E331!

Questions?
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objective

Incorporating Constraints

We want to ensure during measurements that the beam stays on screen
— Define a smoothly varying penalty function to act as a constraint a _ \‘/\ [
Measure maximum distance from 02 |

Define a circular ROI the ROI center to bounding box 041

0.0 0.2 0.4 0.6 0.8 1.0
X

constraint

Constraint: p <0 _
Other examples: Beam losses, dark current production, emittance, etc. o N /\ /\

See R. Roussel et al., PRAB (2024) https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801 PO 02 0E 00 0

ol Ay
e Gardner et. al. ICML 2014



https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801

- N o
Ecosystem of modular tools (can use independently)

Digital Twin Infrastructure | 4 P mifiow

~N

< EPICS CA/PVA

ﬁ@ T @ EPICS

LUME — simulation interfaces/wrappers in Python

lume-model — wraps ML models, facilitates calibration ERuE Poscios & e
OR MinlO Storage /
. . . MLFLOW T EPICS CA/PVA Iii
lume-services — online model deployment and orchestration ui -

distgen — flexible creation of beam distributions i >® >® e

Prefect worker REST API

tiser MLFlow Prefect Stack (Wrapped Model) B
. . ' er Clients
Integration with MLFlow for MLOps | ‘[ ‘
@ < @ Kubernetes Pod

e Live physics simulations and ML models now linked between BB @ Kubernetes Jobs
Deployment on HPC
SLAC’s HPC system (S3DF) and control system \_cPoy
- run with Kubernetes and Prefect

https://www.lume.science/

J

» Working with NERSC to swap between S3DF/NERSC resources E!EJ“ Secure EPICS [/0 WO
* Beginning work on MLOps aspects that will be used in continual £ gun L1X T.. l -
|earning research L]Sl LZ-1INac L3-1nac \
BClsomev B243Gev  14Gev undulator

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way


https://www.lume.science/

E331 Progress: ML for Efficient Characterization

" R. Roussel et. al.

ine: Nat. Comm. 2021
Better Data Sampling: (Y =$C)% &C,(") = h)¥(,"
Bavesian Exblorati 1 (") = o & (") =h ) %)
ayesian Exploration g proximal
biasing
) ) @ 500 ®) 5 0
adaptive sampling | g -
Equal lengthscales Short lengthscale 1.50 - gﬁi?“egion 1.50
i ' . 1.0 1.25 1.25
: . - £ 1.00 £ 1.00
| 6 2 : i & 0.75 0.75
; . % 0.50 0.50
04%
: ' ; 0.25 0.25 \
: b2 0.00 -+ ‘ T T 1 0.00+ T . T 1
; ; 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
‘ B . ] . 0.0 X1 X1
Initial samples Exploration samples = g ‘ Ground truth Validity probability

08

Enables sample-efficient learning |
characterization of high-dimensional constraints |

04

spaces, while respecting both input and
output constraints

0.0 0.0

SL:%\G Region ok Region not ok



Screen

190
Further Automation Beam ' ‘
180 4
* Chaining together automation of 175 |
sub-tasks and measurements ™ Q1 Q2 Y 0]
* RF /laser timing scans, beamline Automated beam alignment ad
alignment, smart sampling for = 20-30 minutes by hand ]
I 155
measurements - 5 minutes with BAX
— Postenor mean ® Training data 40
9 1 Posterior confidence reglon — 02 (mm?)
o o "’/ 30 - — oj (mm?)
O 0 A
201
- 0.0005 A Function Samples 10 1 .
g X Sample Optima
g 0.0000 0 /
= 1000 A —— penalty
0.03 1 750
= 0.02 A1 500 4
s 0.01 A 250 A
0004 - ' ' . , . - : 0+
0 50 100 15?<15etpha2:eo 250 300 350 —250 4

o Automated determination of gun phase with BAX

-2 0 2 4
AWA:Bira3Ctrl:Ch04

JI—I‘\V

—— Steering Current (A) = 0.25
——— Steering Current (A) = 0.07

Poor
steering value

Ideal steering value

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Quadrupole Current (A)

Smart sampling

for emittance measurements
with Bayesian Exploration

_—~ Beam bounding box penalty

R. Roussel, D. Kennedy



Synergies between ML experiments

(

Edge Radiation
Emittance Diagnostics
(E326)
~
Y
Non-destructive, single

shot continuous
monitoring of emittance

of high-current beams
\, S

Virtual TCAV Predictive
Diagnostics
(E327)

)
)

Longitudinal phase
space diagnostics,
always on, and for

extremely short bunches
\. /

Machine Control and Understanding

e
C Y

Diagnostics
(Need information to make decisions)

—_—

Adaptive Feedback
(E325)

N/
Y
Stable, high-quality

beams through control of
unmodeled accelerator

C Y

Control
(How to make decisions)

S

behavior

Learned Control
(E331)

N/
Fast, high-quality control

of extreme beams by
exploiting learned

I\

FACET-Il responses )

Synergistic experiments, individual success enhances all research




Goal: Full Integration of Al/ML Optimization, Data-Driven Modeling, and Physics Simulations

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,

combining algorithms efficiently)

. Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster
g 5 (e.g. SDF at SLAC,
=7 S 85
5 = i - - NERSC at LBNL)
5 B €8 Online Modeling
5 o
=
=] ] s S 3 .
@ Measured Input Data Data High-fidelity Physics
(accelerator settings, processing Simulations
E input diagnostics) Cluster Compute
oM = (CPU,GPU)
e Adaptive ML Models
M >
3 EPICS
(a9}
: Control
o Measured Output Data Data
g SyStem (SCG/(NS, images processing T
g describing the beam) Online Optimization -
= and Characterization Tools a
Ty 2
(@]
- O Archives 3
55 2 Active Learning + (Measurements’ ‘ &
: F Efficient Exploration Predictions, and [
=y
kS 2 Models) | Qe
D R
= 5 & Model and ML-Based &
= <3 Changes in Accelerator Settings Optimization |
b3
. Online Control GUI ! It

Making good progress toward this vision with open-source, modular software tools



Modular, Open-Source
Software Development

*  Community development of re-
usable, reliable, flexible software
tools for Al/ML workflows has been
essential to maximize return on
investment and ensure
transferability between systems

*  Modularity has been key:
separating different parts of the
workflow + using shared standards

VOCS

Defines variables,

objectives and
constraints

Xopt.step()

Pass sample(s) to be evaluated

Generator Evaluator
+  Generates sample - Evaluates
points objective function

Retrieve result(s), handle errors, add data to generator, store results etc

vocs:
name: TNK_test
variables:

x1: [@, 3.14159]
x2: [0, 3.14159]
objectives: {yl: MINIMIZE}

constraints:

cl: [GREATER_THAN, @]
c2: ['LESS_THAN', @.5]

algorithm:
name: bayesian_exploration
options:
n_initial_samples: 5
n_steps: 25
generator_options:
batch_size: 1
#sigma: [[0.01, 0.0],
use_gpu: False

Different software for different tasks:
Optimization algorithm driver (e.g. Xopt)
Visual control room interface (e.g. Badger)
Simulation drivers (e.g. LUME)

Standards model descriptions, data formats,
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

More details at https://www.lume.science/

/

Optimizer
standard

data
Simulation Isﬁf) format Data Set
Impact L
ASTRA &} gen_1.json X .
GPT
Bmad v root:
G . » variables: {
enesis generation: 1
SRW » VOCS:

» error: [] 1241 items
» inputs: [] 1241 items
» outputs: [] 1241 items

FACET-II

Online Impact-T simulation and live
display; trivial to get running on
FACET-Il using same software tools
as the LCLS injector

Modular open-source software has been essential for our work. We welcome new users and contributors.


https://www.lume.science/

Example: Online Models and Bayesian Optimization in Operations

Used combination of online physics simulation and Bayesian optimization algorithms to aid LCLS-Il injector commissioning

Readings from machine via EPICS TR : .
= 83 _ —» Hand over to ML-based optimization for fine tuning
injector settings, laser profile from VCC image e
= 140 | .
i 4 = O ATOfEX == Model learns /77
£ ~— norm_emit_y Y
é 0.8 —%— sqrt_norm_emit_xy 2075 On-the_ﬂy o o
emittance and beam sizes along z = . 4 |/ =
. = . «n| (NO prior \ )(
() 4 2 /| B
g 0.6 E 24.65 data) , / r\ . E
s : /i \ =
(]
©
q') bt 0.6
“ 0.249 s o e .
2 Bayesian optimization H
% 0.0 T T T T T T T T B
0 2 4 6 8 10 12 14 16 18
Xopt iteration o o
N
06-Dec-2022 01:53:37
g ' . MILULILESLLLUN  Best emittance yet obtained durin
LCLS-II live sim: run on HPC and display in control room N 43/1 00 L CLS-II in'ect::r SE——— 8
Updates every 3-8 mins, space charge included, uses LUME-IMPACT Ye&x ’ . . £
4 Yey 0.57 / 1.00 despite extensive previous hand-tuning
N Adjust settings / ranges with insight from predictions — /)

Physicists’ intuition aided by detailed online physics model = simple example of how a “virtual accelerator” can aid tuning

HPC enables fundamentally new capabilities in what can be realistically simulated online



Uncertainty Quantification / Robust Modeling / Model Adaptation

* Major area of Al/ML research: statistical distribution shift training set new conditions
between training and test data degrades prediction
(%)) (%]
* Distribution shift is extremely common in accelerators, due to S S
both deliberate changes in beam configuration and S 3
uncontrolled or hidden variables
model input model input

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for
uncertainty

175 Measured

Predicted (Ensemble Mean)
150

L WM_JWW Mww\w% Wy MW.RUJA

unseen reglon

50

20000 40000 60000 80000 100000
Sample Number (increasing time)

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

o b M\




Optimization of Sextupoles for Spot Size at IP

160 1

——  XIMS
yrms
~ .= geomean

* Ran constrained Bayesian optimization on the
sextupole movers (8 variables total) to minimize spot N

size as measured on the wires in S20 120 -

100

Beam Size (um)

* Recorded auxiliary data (TCAV and EOS, BSA)

80 -
w p
* First step toward more comprehensive tuning in S20
0 5 10 15 20 2 30
Iteration
* Used software, Xopt, established for previous runs
with little need for adjustment to this specific acqulsition
problem = nice demonstration of extensibility — / -
s
Next: it

« Want to use on both IPs (with multi-objective optimization) and use greater number of variables
« Use data to inform faster subsequent optimization

Automatically tuned for a small, round beam at the IP using sextupole movers. Ready for next steps in tuning both IPs and with

broader set of variables.



Landscape of Al/ML Activities at FACET-II

Edge radiation diagnostic | THz diagnostic

Lineout of Intensity at Y = 0

0.1%BW/mi
=

Destructive TCAV-based
LPS measurements

RF Gun

Final Focus and Experiment

<\Interaction Point (IP)

ML-based Adaptive tuning -based
LPS predictions phase space predictions

Virtual non-invasive

diagnostics at FACET-II
E326 E327 E325
/ ML analysis of edge radiation ML-based ML enhanced THz diagnostics Adaptive energy spectrum-based
for emittance measurements LPS predictions for bunch length measurements phase space predictions

ML driven control

Model independent ML-assisted Model dependent
adaptive feedback controls reinforcement learning controls

Synergistic experiments, individual success enhances all research + facility operation

»
)
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Oy

Target

Warm starts for
optimization

ML
Inverse
Model

Suggested
initial
settings

\

Smooth interpolation
Example o, surface from 2D scan, LCLS-II Injector

—— Neural Network ASTRA

A. Scheinker, A. Edelen, LIS phase 0.10
etal, PRL, 2018 BC2 peak current
0.08 41—
gun L1X B
‘ ) ) XTCAV = 0.06{——
L1S, L2-linac L3-linac \ o e .
BClosomev B243Gev  14Gev  undulator Soo]— — o
£ ; 0.02{
Local r\ K
optimizer 0'O%.oo 0.02 0.04 0.06 0.08 0.10
Solenoid 2 (T)
A. Edelen et al., NeurlPS 2019
Eiﬁg&/ L. Gupta, et al,
Ve Y2 e ST 2021
gi"fz 160 - —e— GA with Neural Network
Beemeizes —e— GA with Physics Simulation
» S 140 - x  Best Known Pareto Front
\\ . 10 E
\§ -wfifh B . Surrogate- € Physics Sim:
-10 . I T ~95k core hrs, 131k sims
20 boos-te({ de:SIgn - 2246 cores, 36 hours
— optimization £ 1p9-
@nvolution Layers Deconvolution Layers x i A. Edelen
w Neu.ra/ Network: et al, PRAB,
. . . . . . N .. 80 ~2 mins on a laptop 2020
Include high-dimensional input information & better output predictions (500 sims for training)

Measured
Predicted (Ensemble Mean)

175
150
125

100

80000

50

0 20000 40000 60000
Sample Number (increasing time)

0.35 0.40 0.45 0.50 0.55 0.60 0.65
AE (MeV)

Relative uncertainty estimates indicate
when to retrain

100000
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