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E331 Science Motivation



Neural Network Reinforcement Learning

Variety of high dimensional signals for states, objectives
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x-y laser
120 Hz FEL pulse intensity

Nonlinear instability → sensitive to dynamic processes
(e.g. trajectory feedback, cooling, LLRF control)

RL can help address a different set of needs than BO:

• Use global machine information, more historical data

• Treat as a dynamical system (many time-dependent 

processes/feedbacks + drift)

• Address demands for fast dynamic control from users

Suitability of accelerator tuning problems for RL: 

• Many variables, multi-modal signals (images, scalars, time series)

• Continuous state/action spaces (similar to robotics)

• Have physics models/simulators for many problems



moreassumed knowledge of machine

Model-Free 
Optimization

Observe performance change after 
setting adjustments

→ estimate direction or apply 
heuristics toward improvement

Model-guided 
Optimization

Update a model at each step

→ use model to help select the next 
point

Global Modeling + 
Feed-forward Corrections

Make fast system model

→ provide initial guess (i.e. warm 
start) for settings or fast 

compensation

gradient descent
simplex

ES

Bayesian optimization
reinforcement learning

ML system models +
inverse models

Model-based warm start

Tuning approaches leverage different amounts of data / previous knowledge
→ suitable under different circumstances

J. Kirschner

less

General strategy: start with sample-efficient methods that do well on new systems, then build up to more data-
intensive and heavily model-informed approaches. 



Sextupole tuning for IP at FACET-II

Longitudinal phase 
space tuning on LCLSHigher-precision optimization possible 

when including hysteresis effects in model

BO on sys. with 
hysteresis

Hybrid BO on 
sys. with 

hysteresis

Duris et. al. PRL , 2020

Roussel et. al. PRL , 2022

Roussel et. al. PRAB , 2021

FEL pulse energy tuning at LCLS

Multi-objective 
Bayesian Optimization

target

Many successes 
with Bayesian 
Optimization

(+ improvements)

Algorithms being implemented/distributed in Xopt: https://github.com/xopt-org/
Comprehensive review of advanced BO for particle accelerators: https://arxiv.org/html/2312.05667v2

Beam emittance tuning 
for LCLS-II injector

https://github.com/xopt-org/
https://arxiv.org/html/2312.05667v2


Fast-Executing,  Accurate System Models
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< ms execution speed

106 times speedup

ML models are able to provide fast approximations to simulations
(“surrogate models”)

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity
online prediction, tracking of machine behavior, and model-based control

Edelen et al., NeurIPS 2019

Accelerator simulations that include nonlinear 
and collective effects are powerful tools, but 

they can be computationally expensive

10 hours on thousands of 
cores at NERSC!

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


Fast-Executing,  Accurate System Models

8

< ms execution speed

106 times speedup

Bringing 
simulation tools 

from HPC systems 
to online/local 

compute

Online prediction
Model-based control

Control prototyping
Experiment planning

ML models are able to provide fast approximations to simulations
(“surrogate models”)

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity
online prediction, tracking of machine behavior, and model-based control

Edelen et al., NeurIPS 2019

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


Hand-tuning in seconds vs. tens of minutes

Boost in convergence speed for other algorithms

Can work even under drift

• Round-to-flat beam transforms are challenging to optimize 
→ 2019 study explored ability of a learned model to help

• Trained neural network  model to predict fits to beam image, 
based on archived data

• Tested online multi-objective optimization over model (3 
quad settings) given present readings of other inputs

• Used as warm start for other optimizers

• Trained Reinforcement Learning agent and tested

Example: Warm Starts from Online Models



Many sources of change over time:
• Deliberate changes in beam configuration (e.g. beam 

charge)
• Unintended drift in initial conditions (including in 

unobservable variables), diurnal temperature/humidity 
changes, etc

• Time-dependent action of feedback systems

Drift / Distribution Shift is a Major Challenge

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

unseen region

Example: beam size prediction and uncertainty estimates under drift from a neural network 
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty 

drive laser

B. O’Shea



AI/ML R&D for complex 
system control E331 Science/Technical Goals
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Science/Technical Goal Target Time Definition of Success

Evaluate methods for high-dimensional, high-quality 
control over beams using learned responses, starting 
with small-scale problems +  single-bunch mode

3+ years Automated tuning of transverse emittance and longitudinal 
phase space: faster, higher-quality tuning than standard 
methods, new capabilities in control

High-quality control over extreme beams and plasma 
experiments, two-bunch mode

3-5 years Same as above but for more challenging setups/target 
beams

Deliver algorithms and interfaces for regular operation continual Tools incorporated into regular use + transitioned to 
operations

Main goal: develop and demonstrate 
methods to leverage global learned system 
responses to aid fast, high-quality tuning 

of beams under challenging conditions and 
aid switching between setups

(build up incrementally to machine-wide 
neural network-based reinforcement 

learning)

Staged approach gradually increases complexity, goes from sample-efficient methods that learn on-the-fly to comprehensive model-
based methods that use variety of machine data → success determined by improvements in tuning quality and speed, and TTO

high-impact science cases



E331 Diagnostic and Observables
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• LPS diagnostics (e.g. injector + downstream TCAVs)

• Emittance measurements, x-y beam sizes from wires, transverse phase space from screens

• Upstream inputs: virtual cathode camera, QE map once available, laser diagnostics

• Readbacks from settings (gun solenoid, gun and linac phases/amplitudes etc)

• DAQ: scalar diagnostics (e.g. BPMs, toroids, RF readbacks, BLEN pyros) and multiple image diagnostics (SYAG, EOS, TCAV)

• Plasma diagnostics

→ Flexibility in E331 enables adaptation to installation / commissioning schedule for different diagnostics

Numerous diagnostics to inform tuning or be used as tuning targets

= TCAVs

= Edge radiation cameras
= SYAG

= bunch length pyros



• Integrated our Xopt software into FACET-II control system
- Aids algorithm transfer between experiments; easier to test new algorithms

- Xopt being used very broadly in accelerator community 

• Have improved Badger user interface. Next need to add FACET-II tuning cases 
(e.g. sextupole mover tuning, injector emittance tuning)

• Found computing is a major bottleneck
- 20-40x slower per compute step on controls network than laptops

- Working on several solutions: (1) GPU on controls network, (2) HPC integration 
with S3DF (broader laboratory infrastructure)

- Addressing this has been an extremely slow process due to administrative, 
funding, and engineering personnel constraints (above the FACET-II level); have 
now (FY25) gotten better laboratory support for this

• Modeling infrastructure (need for model-based control / RL)

- Been making progress on start-to-end simulation tools and infrastructure for 
online ML and physics model deployment 

- Want improved model accuracy wrt real machine behavior + to have reliable 
software infrastructure for online model deployment

E331 Practicalities and Infrastructure

FACET-II Injector model 
running online using 

LUME-IMPACT

Variety of tools for online modeling and optimization. Integration of these into FACET-II is progressing.



E331 Progress 2023-2024

• Several data-efficient methods for tuning at FACET-II ready for TTO

- Injector emittance tuning  → mostly ready for transition to operations; needs some 
additional software/interface work and robustness testing

- Sextupole mover tuning (beam size, plasma parameters) → have transitioned to other 
user experiments; need to add to Badger UI to aid ease-of-use

- Automatic “smart sampling” for characterization → ready for general use; need to add 
to Badger UI and consider DAQ interface

• First transfer to other experiments with E300 for sextupole tuning (see Chan’s 
talk yesterday)!

- Initial development with E331 (8 sextupole movers to minimize S20 beam size, then 
expanded to eloss and energy gain) 

- Helped FACET-II/E300 team get set up with the algorithm and provided initial guidance 
during shifts; joint iteration on how best to set up metrics, data processing

• Progress on ML-based model calibration methods (getting simulation to match 

machine in a data-efficient way)
Algorithm developed/tested in E331 

transferred to E300!



Bayesian Optimization and Characterization of Injector

emit x bmag yemit y bmag x

1.8 nC

• Bayesian optimization on the injector with up to 10 variables 
• Extensive data obtained from characterization studies at 3nC, 2nC, and 700pC

Solenoid [kG]
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ML model predictions 
and sample locations

Use of BO results in a local model that 
can be interrogated  → visualization 

being incorporated into Badger

C. Emma, E327



Optimization with Virtual Objectives
• Many objectives require layered scans or optimization problems
• Instead learn model from scratch online and do scan on model
• Bayesian Algorithm Execution (BAX) → 20x speedup in tuning

simulation

experiment

BAX enables a paradigm shift in how optimization problems with complicated scans or other indirect measurements are handled
Demoed at FACET-II injector → now working to get set up for routine use in operations

model is learned
on-the-fly

Convergence of beam size prediction error 
gives practical indicator of convergence

20x faster tuning than standard BO, 
equivalent or better solution than 

hand-tuning

S. Miskovich, MLST, 2024

Quadrupole
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Emittance

device scan observable
computed
objective

10.1088/2632-2153/ad169f


ML for Efficient Characterization 

• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

• Example of integrated cycle between characterization, modeling, and 
optimization → now want to extend to larger system sections and new setups

Have used extensively now at FACET-II for injector to aid model calibration studies 
→ now want to help expand to other experiments and use downstream in linac
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transverse phase space

Automatic Exploration
(constrained to useful values 

of emittance and match)

ML Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector and matching quads)

x-y emit, 
match, 
and 
beam 
images

FACET-II Injector



Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these  to get better understanding of machine performance 

àML model allows fast / automatic exploration of error sources in high dimension

10

First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups

injector
settings

laser image

adaptable calibration
transforms

longitudinal/
transverse phase space

Without 
calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 

solenoid strength found 

automatically with 

neural network model 

(trained first in 
simulation, then 

calibrated to machine)

frozen neural network 
layers trained on 
simulation

Speed of ML models enables rapid identification of error sources between idealized physics simulations and real machine 
→ path toward an accurate system model suitable for model-based control and training reinforcement learning control



Model Calibration
• Want methods that scale efficiently to high dimension 

(e.g. injector + linac), are minimally data hungry, and give 
reliable uncertainty estimates

Neural network approach alone is not sufficient!

• Now have better simulation pipeline and working on 
several methods with the FACET-II injector and linac

- Neural network models (e.g. previous slide)

- Bayesian approaches (e.g. multi-fidelity optimization)

- Differentiable simulations (see Ryan’s talk today)

N=
2e4

N=
2e6

J.P. Gonzalez-Aguilera https://accelconf.web.cern.ch/ipac2023/pdf/WEPA065.pdf

Data Sim
Parameter Nominal Optimal

Gun Phase 30 
Degrees

31.9 
Degrees

Gun Amplitude 120 
MV/m

118.99 
MV/m

Pulse Length 1 ps 0.847 ps

E. Cropp
Preliminary, low-dimensional example of
multi-fidelity calibration  for injector

Differentiable physics 
simulation example

Multi-fidelity calibration



E331 Next Steps: Neural Network Prior
Combining system models with BO → important for scaling BO up to higher-dimensional tuning problems 

Even prior mean 
models with 
substantial 

inaccuracies 
provide a boost in 
initial convergence 

Good first step from previous work: use neural network 
system model to provide a prior mean for a gaussian 
process model

Used LCLS injector surrogate model for prototyping
variables: solenoid, 2 corrector quads, 6 matching quads
objective: minimize emittance and matching parameter

• Want to apply this to with sextupole tuning,  injector and linac tuning, etc at FACET-II → would help significantly 
with high-dimensional tuning

• Should work well in cases where machine drifts but qualitative response is similar

https://arxiv.org/abs/2211.09028

https://arxiv.org/abs/2403.03225

regular Bayesian
optimization

prior mean from models 
with different fidelity

https://arxiv.org/abs/2211.09028
https://arxiv.org/abs/2403.03225


Demonstrated Bayesian optimization for LPS tuning 
on LCLS for several variants of problem setup:
• 2 peak current settings,  6 phases and amplitudes 
• Target phase space, minimize energy spread and 

bunch length

→ Want to expand on this work at FACET-II

→ Data gathered during BO-based tuning will be 
useful for next steps (model calibration, neural 
network control policy + reinforcement learning)

Example from LCLS
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E331 Next Steps: 
Longitudinal Phase Space Tuning



Next steps: drift compensation

LCLS example: FEL pulse intensity

LCLS Chirp Phase

Synthetic problem

Time Dependent Bayesian 
Optimization

Time dependent BO, contextual BO, and model-based RL are all good candidates
Would like to help address the major pain points for other experiments wrt drift



Next plans for E331
• Expand tuning scope being addressed with Bayesian approaches:

- Incorporate information about upstream variations (e.g. charge, bunch 
length) to aid compensation for drift 

- Expand to emittance growth minimization for linac

- Expand sextupole mover tuning w/ eloss and energy gain to additional 
controllable variables across linac

- Expand to longitudinal phase space tuning (e.g. dynamic control over two 
bunch separation)

- Expand to jitter reduction?

- Continue expanding to multiple plasma output metrics

Will use trust region BO, neural network prior + BO, contextual BO, time-
dependent BO

• Incorporate Badger UI into FACET-II and expand work with other 
experiments to leverage and improve these optimization tools, explore 
high-impact use-cases 

• Finish system model calibration studies with injector and linac, expand 
to adaptive model calibration and use online for tuning

• Continue development on reinforcement learning approaches  for more 
comprehensive continuous control, fast switching between setups



Desired facility upgrades

24

Computing
- GPU integration into controls network

• GPU purchased / on-site → now need to add to network (EED)

- Working on getting read/write links between S3DF (on-site HPC), a different GPU 
system, and the controls network
• TID promises an initial solution this week

Expect algorithms to be 20-30x faster per iteration once better compute is established 

→ critical step (right now computing is a major bottleneck for experiment time and TTO)



Thanks to the team involved in E331!

Questions?



backups



Incorporating Constraints
We want to ensure during measurements that the beam stays on screen
→ Define a smoothly varying penalty function to act as a constraint

Define a circular ROI
Measure maximum distance from 
the ROI center to bounding box 
corners

𝑟𝑅𝑂𝐼

𝑟𝑚

𝑝 = 𝑟𝑚 − 𝑟𝑅𝑂𝐼

Constraint:  𝑝 ≤ 0

Other examples: Beam losses, dark current production, emittance, etc.

Gardner et. al. ICML 2014

See R. Roussel et al., PRAB (2024) https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801


Ecosystem of modular tools (can use independently)

Digital Twin Infrastructure

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way

Deployment on HPC
• Live physics simulations and ML models now linked between 

SLAC’s HPC system (S3DF)  and control system  
→ run with Kubernetes and Prefect

• Working with NERSC to swap between S3DF/NERSC resources

• Beginning work on MLOps aspects that will be used in continual 
learning research

LUME – simulation interfaces/wrappers in Python

lume-model – wraps ML models, facilitates calibration

lume-services – online model deployment and orchestration

distgen – flexible creation of beam distributions

Integration with MLFlow for MLOps

https://www.lume.science/
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https://www.lume.science/


E331 Progress: ML for Efficient Characterization 

Better Data Sampling:

Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021
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Enables sample-efficient 

characterization of high-dimensional 

spaces, while respecting both input 

and output constraints

Enables sample-efficient 
characterization of high-dimensional 

spaces, while respecting both input and 
output constraints



Further Automation
• Chaining together automation of 

sub-tasks and measurements
• RF /laser timing scans, beamline 

alignment, smart sampling for 
measurements

Ideal steering value

Poor
steering value

Automated beam alignment
→ 20-30 minutes by hand
→ 5 minutes with BAX

Automated determination of gun phase with BAX

Beam bounding box penalty

Smart sampling
for emittance measurements 

with Bayesian Exploration

R. Roussel, D. Kennedy



Synergies between ML experiments 



Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Data 

processing

Data 

processing

FACET-II LCLS

Data 

processing

Data 

processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 

combining algorithms efficiently)

Making good progress toward this vision with open-source, modular software tools



• Community development of re-
usable, reliable, flexible software 

tools for AI/ML workflows has been 
essential to maximize return on 

investment and ensure 
transferability between systems

• Modularity has been key: 
separating different parts of the 

workflow + using shared standards

Modular, Open-Source 
Software Development

Different software for different tasks:

Optimization algorithm driver (e.g. Xopt)

Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME)

Standards model descriptions, data formats, 
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

Online Impact-T simulation and live 
display; trivial to get running on 

FACET-II using same software tools 
as the LCLS injector 

LCLS

FACET-II

standard
data 

format
LUME

More details at https://www.lume.science/

Simulation

Optimizer

Modular open-source software has been essential for our work.  We welcome new users and contributors.

https://www.lume.science/




Uncertainty Quantification / Robust Modeling / Model Adaptation

• Major area of AI/ML research: statistical distribution shift 
between training and test data degrades prediction

• Distribution shift is extremely common in accelerators, due to 
both deliberate changes in beam configuration and 

uncontrolled or hidden variables

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

unseen region

model input

co
u

nt
s

training set new conditions

model input

co
u

nt
s

Example: beam size prediction and uncertainty estimates under drift from a neural network 
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for 

uncertainty 



• Ran constrained Bayesian optimization on the 
sextupole movers (8 variables total) to minimize spot 
size as measured on the wires in S20

• Recorded auxiliary data (TCAV and EOS, BSA)

• First step toward more comprehensive tuning in S20

• Used software, Xopt, established for previous runs 
with little need for adjustment to this specific 
problem → nice demonstration of extensibility

Optimization of Sextupoles for Spot Size at IP

Automatically tuned for a small, round beam at the IP using sextupole movers. Ready for next steps in tuning both IPs and with 
broader set of variables.

Next:
• Want to use on both IPs (with multi-objective optimization) and use greater number of variables
• Use data to inform faster subsequent optimization



Landscape of AI/ML Activities at FACET-II

37

Synergistic experiments, individual success enhances all research + facility operation

E326 E327 E327 E325

E325 E331



Physics Sim: 
~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Smooth interpolation 
Example 𝝈𝒙 surface from 2D scan, LCLS-II Injector

Surrogate-
boosted design 

optimization 

Warm starts for 
optimization

ML

Inverse 

Model

L1S phase

BC2 peak current

Local 

optimizer

Suggested 

initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

A. Edelen
et al., PRAB, 

2020

Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 

Hidden Layers

… N - 2 …

Scalar outputs

VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Include high-dimensional input information à better output predictions

L. Gupta, et al, 

MLST, 2021

A. Edelen et al., NeurIPS 2019

Relative uncertainty estimates indicate 
when to retrain
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