E326 Progress in FY 24 and Plans for FY25

Brendan O'Shea / Lead Scientist / Advanced Accelerator Research Department Head 2024 FACET-II PAC & User Meeting

Fast beams, slow measurements

- The future is beams of unprecedented density
 - Short bunch length beams to reduce disruption in colliders
 - Nanometer scale bunch lengths
- Live diagnostics always get used
- Conventional beam diagnostics have limitations
 - Material in the beam path disturbs beam quality: can only measure one at a time, can not measure and perform experiments
 - High intensity beams may destroy the diagnostic

New diagnostics are required for high current beams

SLAC 2024 FACET-II PAC & User Meeting

Edge Radiation as a Diagnostic

- Non-intercepting diagnostics are key for doing online analysis and control more from Claudio
 - Measure emittance continually without intercepting the beam
- Beam information encoded in interference pattern (inverse problem)
- Developed a differentiable simulation code for computing synchrotron radiation
- Demonstrated single shot, non-intercepting diagnostic (image analysis), using conv. autoencoders, and a physics based loss function
- Partnered with Stanford Data Science to introduce non-physics undergraduates to SLAC

Inverse Problems $I(x) = \left| \int E(x - x')\rho(x)dx \right|^2$ Solve for ρ

Edge radiation diagnostic meets previously listed challenges

AC 2024 FACET-II PAC & User Meeting

How is information encoded in interference

Beam distribution reduces contrast of high frequency interference

SLAC 2024 FACET-II PAC & User Meeting

Diagnostic located in BC11

Results in a nutshell

- Measurements made at 3 nC
- Solenoid used to change emittance
- Quad scan used to collect data

Latent representation of images

- Autoencoder learns to focus on interference
- Noise is not propagated downstream

Latent representation converts noisy images to robust scalars

SLAC 2024 FACET-II PAC & User Meeting

Convert latent images into real beam parameters

Transform latent space into beam size

SLAC 2024 FACET-II PAC & User Meeting

We can do better than physical rms

Transform latent space into emittance

SLAC 2024 FACET-II PAC & User Meeting

Plans for FY25

- Demonstrated operation principal!
- Improvements to be made in light collection
- Goal: Run E326 at the same time as other experiments

 $\frac{c_2}{c_1} \propto \left(\frac{f_1}{f^2}\right)^2 \left(\frac{p_2}{p_1}\right)^2 \left(\frac{QE_2}{QE_1}\right) \left(\frac{fNum_1}{fNum_2}\right)^2$

Camera	Pixel size p [um]	QE @ 490 nm	f [mm]	f#	c2/c1
Mako G-125	3.75	0.55	50	1.4	1.00
Mako G-40	6.9	0.70	50	1.2	5.86
Hamamatsu ORCA FLASH V4	6.5	0.75	50	1.2	5.58

 $(\sigma_{11}^{NN}\sigma_{22}^{NN}-(\sigma_{12}^{NN})^2)$

 $\varepsilon_n^{NN} =$

 Strong synergy with injector tuning (E331) and GPSR (New Proposal)

In FY25 transition from demonstration to diagnostic

SLAC 2024 FACET-II PAC & User Meeting