E-320 Progress in FY24 and Plans for FY25

2024 FACET-II PAC & User Meeting

David Reis

November 19, 2024 This work was supported by the U.S. Department of Energy under award DE-SC0020076

The E-320 collaboration

Strong-Field QED: from linear to nonperturbative Compton scattering

Electron-photon (Compton) scattering *Klein & Nishina (1929)*

Smallness of α ≈ 1/137 can be compensated by the laser photon density ρ ⇨ **nonperturbative interaction**

Nikishov & Ritus, JETP 19, 1191 (1964); Brown & Kibble, Phys. Rev. 133, A705 (1964); etc.

Strong-Field QED: quantum radiation reaction

 $^-$ PULSE

Strong-Field QED: observing tunneling electron-positron production

Vacuum polarization

photon transforms temporarily into an electron-positron pair

Pair production

virtual pair is "ionized" by laser at QED critical field

Qualitative changes between E-144 and E-320:

(analogous to strong-field ionization of atoms)

E-144 (a_0 ≤ 1): multi-photon regime

E-320 ($a_0 \ge 1$): tunneling regime

E-320 Progress in FY24 and Plans for FY25 Reis/Meuren 5

Wikip edia

- **We observe physics of nonlinear electron-laser interactions in SFQED regime**
	- \Rightarrow Shift/change of Compton edges observed (dressed electron mass)
	- \Rightarrow Transition from perturbative to non-perturbative spectrum observed
- **Plan for FY25: transition from "qualitative" to fully quantitative measurements**
	- \Rightarrow Need to spend time on measurements rather than commissioning (stable t_0 , stable beam or working feedbacks for spatial & temporal drifts, ...)
	- \Rightarrow Make sure that we preserve the focal-spot quality at the highest intensities
	- \Rightarrow Proper calibration of all diagnostics (BPMs, BBA of spectrometer quads, ...)
- **Plan for FY25: start the positron program**
	- \Rightarrow New tracking detector installed (WIS), LYSO imaging system upgraded
	- \Rightarrow Need stable beam, remove upstream Be window, reduce losses in S20
	- \Rightarrow Ideally we will be able to send more laser energy to the tunnel

International competition: taking publishable data is timely

nature photonics

Article

https://doi.org/10.1038/s41566-024-01550-8

All-optical nonlinear Compton scattering performed with a multi-petawatt laser

[Submitted on 16 Jul 2024]

Observation of quantum effects on radiation reaction in strong fields

E. E. Los. E. Gerstmayr, C. Arran, M. J. V. Streeter, C. Colgan, C. C. Cobo, B. Kettle, T. G. Blackburn, N. Bourgeois, L. Calvin, J. Carderelli, N. Cavanagh, S.J.D. Dann A. Di Piazza, R. Fitzgarrald, A. Ilderton, C. H. Keitel, M. Marklund, P. McKenna, C. D. Murphy, Z. Najmudin, P. Parsons, P. P. Rajeev, D. R. Symes, M. Tamburini, A. G. R. Thomas, J. C. Wood, M. Zepf. G. Sarri, C. P. Ridgers, S. P. D Mangles

Highlight FY24: Electrons become more massive in strong laser fields

ຮ∑
ຈ Ξ etry magazin e.org

> In the standard model, mass originates from interactions with the Higgs field

$$
q^2 = m_*^2
$$
, $m^* = m\sqrt{1 + a_0^2/2}$

Inside a laser field the electron mass increases, which shifts the position of the Compton edges

where m_* acts as an "effective mass" of the electron in the field.

Nikishov & Ritus, JETP 19, 1191 (1964); Brown & Kibble, Phys. Rev. 133, A705 (1964); Landau & Lifshitz (vol. 4) Analysis: T. Smorodnikova

Change of 1st Compton edge: reduced effect due to spatial averaging

Brown & Kibble, *Interaction of Intense Laser Beams with Electrons*, Phys. Rev. 133, A705 (1964) Nikishov & Ritus, *Quantum Processes in the Field of a Plane Electromagnetic Wave and in a Constant Field*, JETP 19, 1191 (1964)

Highlight FY24: Transition from perturbative to non-perturbative regime

- Highest laser intensities: quasi-continuous spectrum with averaged (!) $x \ge 0.1$
- We observe electrons down to at least 6 GeV (40% energy loss in single emission)
- Simulations suggest importance of multiple hard emissions (**quantum radiation reaction**)

Nikishov & Ritus, JETP 19, 1191 (1964); Brown & Kibble, Phys. Rev. 133, A705 (1964); Landau & Lifshitz (vol. 4) Analysis: T. Smorodnikova

Nonlinear laser wire: measuring compressed electron beams

- Proof-of-principle demonstration during last spring shift (May 21, 20024)
- Repetition during Nov. shift was difficult: DAQ problems & poor beam stability
- Requires new timing stabilization based on EOS delay stage for long-range scans

ToDo: repeat with higher spatial resolution and active timing stabilization

the idea was first used by E-144; see, for example, Bamber et al., PRD 60, 092004, 1999

Improvements in FY24

(which made new results possible)

Installation of dielectric λ/10 OAP (Alex & Junzhi, April 24, 2024)

old, gold OAP, λ/4

new, dielectric OAP, λ/10

- There is risk of damage by other experiments (solid-target collisions, Li oven, …)
- We purchased backup optics (AlSi substrate, quality seems even better; still requires coating)

f# \leq 2: ~2 µm spot (FWHM) collision angle: 25°-30°

Improvement of the focal-spot quality

Low-Background LFOV (Alex)

Current setup

FY25 upgrade

- Main diagnostic for the scattered electron spectrum
- Much more sensitive than LFOV, further improvements ongoing

Low-Background LFOV (Alex)

ToDo FY25: better image quality, better background management

- have entire screen in focus using Scheimpflug optics (suggestion: D. Storey)
- Improve flatness of screen, possibility to add filters (reduce backgrounds)
- Add more sensitive scintillator (CsI, LYSO; single-electron sensitivity?)
- **Highly desirable**: test direct detection using ePix detector

ePix module provided by the SLAC detector group

LUXE Electron Detection System (T-618, DESY)

DESY team: A. Athanassiadis, L. Hendriks, L. Helary, R. M. Jacobs, J. List, E. Ranken, I. Schulthess, M. Wing

LUXE TDR: <https://arxiv.org/pdf/2308.00515.pdf> EPS talk: [https://indico.desy.de/event/34916/](https://indico.desy.de/event/34916/contributions/147283/attachments/83963/111794/High-rate_electron_detectors_Athanassiadis.pdf)

Commissioning has been successful; detailed data analysis is ongoing

Positron tracker prototype (T-619, Weizmann Institute)

Noam Tal Hod's group, WIS: Sasha Borysov, Alon Levi, Nathaly Nofech-Mozes, Arka Santra (now in SINP, Kolkata), Roman Urmanov

Hardware survives and is producing data

- Thin monolithic active pixel sensors "ALPIDEs" (ALice PIxel Detector)
- Radiation hardness: technology is used in the ALICE experiment at the LHC

Details: LUXE TDR ([arXiv 2308.00515](https://arxiv.org/pdf/2308.00515.pdf)); Alpides (26.9 μm x 29.2 μm): NIM A 824 (2016) 434-438 and NIM A 845 (2017) 583–587

Positron tracker prototype (T-619, Weizmann Institute)

Positron tracking

Upstream Be window must be retractable

We are ready to measure Breit-Wheeler positrons

- For the first time we can measure single positrons
- Upstream Be window: major source for positrons via emission of gamma rays that hit pipes etc.
- Current installation: 4 layers, 1 chip each (one additional layer in hand, up to 9 feasible)

Full-scale Geant4 simulations

New spatial-alignment procedure: can handle compressed electron beam

2023 YAG crystal

YAG is retracted when gamma emission is detected

- **Main challenge in 2023**: compressed electron beam destroys YAG crystal
- **Mitigated by peripheral knife-edge scan**: move YAG towards beam and monitor diagnostics
	- Scintillation light (E320 TARGET camera) is early indicator that e-beam is near (beam halo)
	- Beam is detected by enhanced production of gamma photons / positrons

Drift compensation for laser-electron timing (Alex)

Time drifts \sim 1ps (without stabilization); EOS range is only \sim 2 ps

k Stanford

● **ToDo (high priority): use EOS delay-stage to track laser delay for long-range scans**

Goose trigger

- Currently: every 10th shot is goosed (prone to systematic errors; need more background data)
	- ⇨ **ToDo: programmable pseudo-random goose trigger + ~50/50 on/off (high priority)**
	- ⇨ **ToDo: record event code and which shots are goosed as PV**

Challenges

Scattering on upstream Be window: renders experiment impossible

- Major challenge: low-energy electrons from Be window are undistinguishable from our signal
- Significant effort for OPs to thread e-beam through the hole in the Be window (takes away time) \Rightarrow beam orbit through the IP is often angled, leading to position-angle correlations in the data \Rightarrow it is difficult to fully compensate the dispersion in the chicane, resulting in large beam drifts

Beam position drift/jitter at the E-320 IP (spring vs. fall)

- BPM before picnic basket (3156) was defect during all our shifts in 2024 ⇨ **Todo: make sure that all BPMs (in Sector 20) are working and calibrated**
- Not all BPMs in Sector 20 are in EPICS (valuable data are not being recorded) ⇨ **Todo: include existing BPMs (in Sector 20) into EPICS**

 \triangleq Stanford PULSE

● **Goal: remove upstream Be window, optimize for zero dispersion (active stabilization?)**

Beam stability fall 2024: significant fluctuations/changes in background

- We saw strong fluctuations in the beam-induced background (beam-position drifts/jitter?)
- **ToDo: pseudo-random goose trigger + ~50/50 on/off** (more background data)

 \triangleq Stanford PULSE

Instability of t₀: significant time spent on plasma afterglow procedure

- \cdot Stable t₀ reduces setup time by several hours
- Bucket jumps and unstable FS-script sabotaged our fall beamtime
- **Highly desirable**: robust diode/pickup for sub-ns timing diagnostic

Anomaly at highest laser intensity

- Theory: we are heating the gratings and/or OAP, this leads to phase-front deformations
- **ToDo: more laser diagnostics in tunnel** (phase-front sensor, focal-spot diagnostics)

Goal: shot-to-shot high-intensity diagnostic

High-intensity diagnostics: 2nd OAP re-images the focal spot

Interferometric alignment of both OAPs

Timing drift stabilization: currently incompatible with long scans

- Time drifts \sim 1ps (without stabilization); EOS range is only \sim 2 ps
- **ToDo: use EOS delay-stage movement for long-range scans** (similar fix should also be used for the grating scans)

≰ Stanford. PULSE

500

 -200

100

 Ω

 Ω

100

200

300

400

Challenge: EOS becomes invisible at low intensities

- EOS signal becomes too weak during intensity scans
- **ToDo: increase probe intensity when main laser is attenuated**

500

400

100

 Ω

 $\overline{0}$

100

200

300

 -100

 \cdot 0

We didn't collide at optimal timing: effective laser intensity is reduced

- If we properly collided with the laser, we would observe an optimal collision time
- For non-optimal alignment it is very difficult to determine (effective) laser intensity
- **ToDo: run this analysis in real time and correct relative timing** (possible in the future)

Future plans

Mid-term goal: upgrade gamma diagnostics

Measure photon formation length ICLA UCLA group

Compton (MeV) + gamma pair spectrometer (GeV) *B. Naranjo et al., IPAC2021 THPAB269, THPAB270 (2021)*

B. Naranjo: Gamma Detection: Compton and Pair Spectrometers

D. Storey: Experimental area (e- and gamma diagnostics, DPS, Li oven)

Mid-term goal: ≳ 100 TW laser: FES expressed interest

Laser Transport to Tunnel

Current laser system: 10 TW (~60 fs, 0.6 J in laser room)

Thales 100 TW proposal

Mid-term goal: install gamma-ray profiler with high resolution

Sapphire-strip detector

2x2cm² field of view, 5-10 um resolution, High radiation resistance (Sapphire)

INFN, U. Bologna, & U. Padova: P. Grutta, M. Bruschi, M. Morandin, F. Lasagni, S. Vasiukov, U. Dossell QUB: K. Fleck, N. Cavanagh, E. Gerstmayr, M. Streeter

E-320 Progress in FY24 and Plans for FY25 Reis/Meuren 35

The gamma-profile ellipticity is related to a_0 in the interaction region

High-order multiphoton Thomson scattering Yan et al., Nature Photon. 11, 514 (2017)

Har-Shemesh & Di Piazza Opt. Lett. 37, 1352–1354 (2012)

Long-term goal: 2nd IP to realize gamma-laser collisions

Measuring vacuum birefringence beyond Euler-Heisenberg

New chicane between quads and dipole D. Storey

Summary and timeline

Short & mid-term goals:

Long-term goals:

- 100-500 TW laser upgrade for FACET-II
- 2nd IP: light-by-light scattering experiments, (pair production & vacuum birefringence)
- Polarization-sensitive detectors: vacuum birefringence, radiative spin polarization
- Observe signatures of high-energy electron-positron coherent recollisions, waveform synthesis

 \bullet ...

Thank you for your attention

Shift of 2nd Compton edge (electron mass dressing)

Brown & Kibble, *Interaction of Intense Laser Beams with Electrons*, Phys. Rev. 133, A705 (1964) Nikishov & Ritus, *Quantum Processes in the Field of a Plane Electromagnetic Wave and in a Constant Field*, JETP 19, 1191 (1964)

Dielectric λ/10 OAP: improved focal quality

Better spot quality, higher Strehl, much improved focal scans

Low-Background LFOV (Alex)

- ORCA FLASH $4.0 +$ Nikkor 50mm $f/1.2 +$ DRZ fine
- Sees up to 24.4 cm over the table surface
- Detection of low-energy scattered electrons
- Much more sensitive than LFOV

Low-Background LFOV: energy calibration

Beam stability spring 2024: much better beam-induced backgrounds

- Even though we put the main beam fully on LBG LFOV, the background is much more stable
- Enhanced beam-tuning time in spring significantly improved the beam quality

 \triangleq Stanford PULSE

Beam position drift/jitter at the E-320 IP (spring vs. fall)

- BPM before picnic basket (3156) was defect during all our shifts in 2024
	- \Rightarrow negative impact on the precision that we can achieve
	- ⇨ **Todo: make sure that all BPMs (in Sector 20) are working and calibrated**
- Not all BPMs in Sector 20 are in EPICS (valuable data are not being recorded) ⇨ **Todo: include existing BPMs (in Sector 20) into EPICS**

We can recover collisions in ≲ 4 hours (Spring 2024)

- **Importance of multi-day shifts**: 2nd/3rd day was always much more productive
- Requires that t_0 doesn't change and that the e-beam doesn't scrape the Be window

Spatial alignment requires now ≤ 2 hours

Elog Nov 4, 2024

found e-beam in vertical dimension

20:40 vertical peripheral knife-edge scan http://physics-elog.slac.star motor position where the beam was intercepted: 47.985 http://phys moved e-beam off the YAG in horizontal dim http://physics-elog.s

found e-beam in horizontal position

done at 47.0000 YAG height motor at 65.6 rev (pico horizontal YAG)

22:00 found collisions. Laser timing jumped again by 2.1 ns to 1246.618

Elog Nov 3, 2024

Found e-beam at 47.8480 mm YAG height

19:45 vertical knife-edge finding http://physics-elog.slac.stanford.edu 20:25 moved laser to e-beam (vertical)

Found e-beam at 74.2 (horizontal)

20:53 http://physics-elog.slac.stanford.edu/facetelog/show.isp?dir=/202 21:15 lost auto aligner, trying to fix laser transport 22:10 moved laser to e-beam (horizontal); doing wavefront optimization 22:24 focal scans http://physics-elog.slac.stanford.edu/facetelog/show. 22:28 MO tower retracted; going to full laser energy 22:30 Laser 642.5 mJ +- 12.65 mJ

time stamp: 1731846158.76 delay: 0.30 DAQ: 0 process: 0.06/0/0 render: 0.17/0/0 std: 133.02

PyQt5 GUI for spatial alignment (10 Hz camera readout)

Recovering t0 via plasma afterglow: 2-3 hours

Elog Nov 2, 2024: \geq 3 hours

22:50 can't recover timing on EOS 23:45 gas iet is being prepared for timing via afterglow 00:15 Ar bottle connected to gas jet and at 100 psi packing pressure 01:15 Plasma after glow is finally working: searching for to by hand $01:35$ t0 found with axilens at ~ 1247.261 ns 02:05 found t0 with EOS! http://physics-elog.slac.stanford.edu/facetelog t0: 1246.6450 ('OSC:LA20:10:FS TGT TIME)

Elog Nov 3, 2024: \geq 2 hours

Finding t0 (vesterday t0: 1246.6450)

15:30 - still trving to recover t0 on EOS DAQ failed http://physics-elog.slac.stanford.edu/facetelog/show 15:40 scanned target time 1255.0 - 1255.5 ns

Gas iet / afterglow t0 finding

15:45 can't run gas jet due to pump issues: http://physics-elog.slac.st 16:00 Doug / Alex fixed the pump issues http://physics-elog.slac.stanfo 16:40 found t0 via plasma afterglow: http://physics-elog.slac.stanford. gammal and topview correlation with timing: http://physics-elog.s 16:58 found t0 on E0S: http://physics-elog.slac.stanford.edu/facetelog/

Recovered timing on EOS: 1244.5350

