E304 Progress in FY24 and Plans for FY25

<u>Chaojie Zhang</u>, Sebastien Corde, Xinlu Xu (PIs) (on behalf of the E300 collaboration)

Nov 19, 2024

Work supported by DOE-HEP

FACET-II PAC Meeting, NOV 19-21, 2024

E304- Science goals and FY24 achievements

E304: Generating low emittance beams using downramp trapping in PWFA

Stage					
<u>Stage 1 (year 1):</u>					
Injection					
demonstration					

Stage 2 (year 1-2): Injection and acceleration optimization Planned Goals (FY22)

-Evidence of injection (charge excess, signal on spectrometer)

-Generate stable 1-few GeV beams

-Compare laser and beam ionization (smaller emittance if laser ionized)

<u>Stage 3 (year 2-3):</u> Ultralow emittance, high-brightness

beams

- emittance < 1 μ m
- energy > 1 GeV
- energy spread < 1%
- *l* > 5 kA

Exceeding Expectations: E304 has demonstrated energy gain up to 26 GeV, far surpassing original goals of a few GeV beams!

	Key Achievements (FY24)	Next steps
7	✓ ACHIEVED: Charge excess observed with significant driver energy loss	
	✓ ACHIEVED: Beams with energy from few GeV to up to 26 GeV; Inj. prob. >10%	<i>-Improve stability -Try different configurations</i>
n		<i>-Test laser vs. beam ionization</i>
	 ACHIEVED: emittance ~2 μm energy up to 26 GeV energy spread <1% I up to 8 kA 	<i>-Improve diagnostics for measuring <1 µm emittance</i>

Experiment setup- Gas-jet in Static-fill

- focus; can use lower plasma & driver density due to much extended acceleration length

Experimental setup

• The original design used a 2-cm plasma, which required high density (10¹⁸ cm-3) to achieve >GeV energy gain. This, in turn, required a dense driver ($\sigma_r < 10 \mu m$, $\sigma_7 < 10 \mu m$)- currently not available • Changed to the GIS configuration: a meter-scale beam-ionized plasma; allows the driver to self-

March data: Multi-GeV energy gain of downramp injected electrons

Selected shots to highlight the injected bunch (energy 2.7-4 GeV with ~5% FWHM spread)

E304_06341, static fill 3.4 Torr, gas jet backing pressure 100 psi, e- beam height 2 mm. Quad 1.8 GeV, Dipole 3.5 GeV

June data: Example dataset demonstrating >20 GeV energy gain

• ~20 GeV energy gain ~10 pC injected charge • narrow beam divergence

Energy gain of 26 GeV with <1% rms energy spread

Energy tunability through acceleration length control

Energy tunability and extracted accelerating gradient

• Acceleration length increases as the beam waist location is moved downstream in vacuum • Max energy scales linearly with acc. length, yielding an avg. gradient of 10.9 ± 1.3 GeV/m.

Narrow energy spread observed across varying acceleration lengths

- to fully compensate the accumulated energy chirp
- Results indicate a locally loaded wake

• Likely **NOT** caused by *dynamic beam loading*, which would require an optimal acceleration length

Well characterized dataset for emittance and phase space analysis

- Injection probability: ~13% (66 out of 500 shots)
- Injected charge: ranges from a few to 50 pC
- Energy: ~ 17 GeV

µm-Level emittance of the ~17 GeV injected beam

11

Reconstructing longitudinal phase space from measured energy spectrum

for a given injected solving an ODE $A'(r_b) \frac{dz}{d\xi}$ bunch with current to get r_h and the accele profile $\lambda(\xi)$

The injected charge must be distributed to load the wake such that the resulting energy spectrum matches the measured one W. Lu et al., PRST-AB (2007), T. Dalichaouch et al., Phys. Plasmas (2021) 12

A precise model for PWFA enables the reconstruction of the injected bunch's current profile

$$\frac{r_b}{\xi^2} + B'(r_b)r_b(\frac{dr_b}{d\xi})^2 + C'(r_b)r_b = \frac{\lambda(\xi)}{r_b} \longrightarrow \text{ energy spectrum determined by }$$
erating field E_{χ} and $E_{\chi}(\xi)$

Reconstructing longitudinal phase space from measured energy spectrum

Reconstructed current profile of the injected bunch

All three methods (SA, SGD with Auto Differentiation, Neural Network) give similar results

- 50% charge bunch length ~0.8 μ m (2.7 fs)
- full length ~2 μ m
- peak current 8 kA
- total charge ~25 pC

14

PWFA as a beam brightness booster

E304 injected beam brightness comparable to state-of-the-art machines,

The E304 experiment shows beam brightness comparable to leading facilities such as LCLS, highlighting the potential of PWFA to transform low-brightness beams into significantly higher-brightness beams, suitable for light sources and collider applications.

Parameters	Drive beam	Injected beam	LCLS*	Unit
Charge	1,600	25	180	рC
Length	20	~1	3 – 16	μm
Emittance	<i>23</i>	2.4	0.5 — 1.6	μm
Peak current	9.6	8.0	1.0 — 5.0	kA
Brightness	3.6E+13	2.8E+15**	8E+15	A/rad ² /m ²
Energy	10	17	<u>3.5 — 16.5</u>	GeV

*LCLS FEL Parameters – Updated July 19, 2024

**boosted by ~80 times. probably can go higher if 1) post compress the bunch or 2) using higher density plasmas

1

E304 progress summary

What's next for E304

Near-term plan: 1) measure the μ m-level bunch length (Nov 26-27, 2024) 2) improve stability and explore different configurations

Mid-term evolution: 1) post compression of the injected bunch (in collaboration with E338) 2) modulated downramp injection for generating pre-bunched beams

Near-term plan #1: try to measure the µm-level bunch length using CSR

Near-term plan #2: improve stability and explore different configurations

We have tested the Gas-jet in Static-fill configuration and achieved remarkable results

- pros:

 - static-fill plasma focuses the drive beam to increase the beam density - long plasma enables high energy injected bunch
- cons:
 - relies on beam-ionization (requires a large current spike to ionize H2) - large fluctuations due to variations in drive beam evolution and plasma length

The original design relied solely on the 2-cm gas jet for both injection and acceleration

- pros:
 - fixed plasma length improves reproducible (better for post-compression/FEL) - laser pre-ionized plasma may reduce emittance of the injected beam
- cons
 - requires a high quality drive beam (e.g., $10x10x10 \mu m$)
 - low energy (<~1 GeV)
 - reduced rep. rate (1 Hz or lower to clear background gas)

20

Mid-term plan #1: generating attosecond bunches via post-compression

Assuming no emittance growth in compression, B~5.8e16 A/m²/rad², brighter than LCLS beams 21

chicane: magnetic compressor for beams

Mid-term plan #2: generating nano-bunched beams using Modulated-DDR

Enabling techniques:

- produce a modulated downramp via plasma grating
- measure bunched beams using CSR

producing modulated downramp via plasma grating

E304- Progress in FY24 and Plans for FY25

E304: Generating low emittance beams using downramp trapping in PWFA

Stage

<u>Stage 1 (year 1):</u> Injection demonstration

Stage 2 (year 1-2): Injection and acceleration optimization

<u>Stage 3 (year 2-3):</u> Ultralow emittance, high-brightness beams

Planned Goals (FY22)

-Evidence of injection (charge excess, signal on spectrometer)

-Generate stable 1-few GeV beams

-Compare laser and beam ionization (smaller emittance if laser ionized)

- emittance < 1 μ m
- energy > 1 GeV
- energy spread < 1%
- *l* > 5 *kA*

	Key Achievements (FY24)	Next steps
7	✓ ACHIEVED: Charge excess observed with significant driver energy loss	
	✓ ACHIEVED: Beams with energy from few GeV to up to 26 GeV; Inj. prob. >10%	<i>-Improve stability -Try different configurations</i>
1		<i>-Test laser vs. beam ionization</i>
	 ✓ ACHIEVED: • emittance ~2 µm • energy up to 26 GeV • energy spread <1% • I up to 8 kA 	<i>-Improve diagnostics for measuring <1 µm emittance</i>

