E304 Progress in FY24 and Plans for FY25

Chaojie Zhang, Sebastien Corde, Xinlu Xu (PIs) (on behalf of the E300 collaboration)

Nov 19, 2024

FACET-II PAC Meeting, NOV 19-21, 2024

Work supported by DOE-HEP

E304- Science goals and FY24 achievements

Exceeding Expectations: E304 has demonstrated energy gain up to 26 GeV, far surpassing original goals of a few GeV beams!

E304: Generating low emittance beams using downramp trapping in PWFA

Experiment setup- Gas-jet in Static-fill

• The original design used a 2-cm plasma, which required high density (10¹⁸ cm-3) to achieve >GeV energy gain. This, in turn, required a dense driver (σ_r <10 μm, σ_z <10 μm)- currently not available σ_r • Changed to the GIS configuration: a meter-scale beam-ionized plasma; allows the driver to self-

-
- focus; can use lower plasma & driver density due to much extended acceleration length

Experimental setup

March data: Multi-GeV energy gain of downramp injected electrons

E304_06341, static fill 3.4 Torr, gas jet backing pressure 100 psi, e- beam height 2 mm. Quad 1.8 GeV, Dipole 3.5 GeV 4

Selected shots to highlight the injected bunch (energy 2.7-4 GeV with ~5% FWHM spread)

June data: Example dataset demonstrating >20 GeV energy gain

• ~20 GeV energy gain • ~10 pC injected charge • narrow beam divergence

Energy gain of 26 GeV with <1% rms energy spread

Energy tunability through acceleration length control

7

Energy tunability and extracted accelerating gradient

-
-

• Acceleration length increases as the beam waist location is moved downstream in vacuum • Max energy scales linearly with acc. length, yielding an avg. gradient of 10.9 ± 1.3 GeV/m.

Narrow energy spread observed across varying acceleration lengths

• Likely **NOT** caused by *dynamic beam loading,* which would require an optimal acceleration length

- to fully compensate the accumulated energy chirp
- **• Results indicate a locally loaded wake**

Well characterized dataset for emittance and phase space analysis

- Injection probability: ~13% (66 out of 500 shots)
- Injected charge: ranges from a few to 50 pC
- Energy: \sim 17 GeV

μm-Level emittance of the ~17 GeV injected beam

Reconstructing longitudinal phase space from measured energy spectrum

solving an ODE $A(r_b)$ to get r_b and the acceleration for a given injected bunch with current \rightarrow profile *λ*(*ξ*)

The injected charge must be distributed to load the wake such that the resulting energy spectrum matches the measured one 12 *W. Lu et al., PRST-AB (2007), T. Dalichaouch et al., Phys. Plasmas (2021)*

A precise model for PWFA enables the reconstruction of the injected bunch's current profile

$$
\frac{d^2r_b}{d\xi^2} + B'(r_b)r_b(\frac{dr_b}{d\xi})^2 + C'(r_b)r_b = \frac{\lambda(\xi)}{r_b}
$$
 energy spectrum
electrating field E_z and $E_z(\xi)$

Reconstructing longitudinal phase space from measured energy spectrum

Reconstructed current profile of the injected bunch

- 50% charge bunch length ~0.8 µm (2.7 fs)
- full length ~2 µm
- **• peak current 8 kA**
- total charge ~25 pC

14

All three methods (SA, SGD with Auto Differentiation, Neural Network) give similar results

PWFA as a beam brightness booster

15

E304 injected beam brightness comparable to state-of-the-art machines

The E304 experiment shows beam brightness comparable to leading facilities such as LCLS, highlighting the potential of PWFA to transform low-brightness beams into significantly higher-brightness beams, suitable for light sources and collider applications.

**LCLS FEL Parameters – Updated July 19, 2024 **boosted by ~80 times. probably can go higher if 1) post compress the bunch or 2) using higher density plasmas*

What's next for E304

Near-term plan: 1) measure the µm-level bunch length (Nov 26-27, 2024) 2) improve stability and explore different configurations

Mid-term evolution: 1) post compression of the injected bunch (in collaboration with E338) 2) modulated downramp injection for generating pre-bunched beams

Near-term plan #1: try to measure the µm-level bunch length using CSR UCLA

Near-term plan #2: improve stability and explore different configurations

We have tested the Gas-jet in Static-fill configuration and achieved remarkable results

- pros:
	-
	- static-fill plasma focuses the drive beam to increase the beam density - long plasma enables high energy injected bunch
- cons:
	- relies on beam-ionization (requires a large current spike to ionize H2) - large fluctuations due to variations in drive beam evolution and plasma length
	-

The original design relied solely on the 2-cm gas jet for both injection and acceleration

- pros:
	- fixed plasma length improves reproducible **(better for post-compression/FEL)** - laser pre-ionized plasma may reduce emittance of the injected beam
	-
- cons
	- requires a high quality drive beam (e.g., $10x10x10 \mu m$)
	- low energy (<~1 GeV)
	- reduced rep. rate (1 Hz or lower to clear background gas)

Mid-term plan #1: generating attosecond bunches via post-compression
^{UCLA}

chicane: magnetic compressor for beams

Assuming no emittance growth in compression, B~5.8e16 A/m2/rad2 , brighter than LCLS beams

Enabling techniques:

- •produce a modulated downramp via plasma grating
- measure bunched beams using CSR

Mid-term plan #2: generating nano-bunched beams using Modulated-DDR

producing modulated downramp via plasma grating

E304- Progress in FY24 and Plans for FY25

23

Stage 1 (year 1): Injection demonstration

-Evidence of injection (charge excess, signal on spectrometer)

Stage 2 (year 1-2): Injection and acceleration optimization

-Generate stable 1-few GeV beams

-Compare laser and beam ionization (smaller emittance if laser ionized)

Stage 3 (year 2-3): Ultralow emittance, high-brightness beams

Stage *Planned Goals (FY22)*

- *• emittance < 1 µm*
- *• energy > 1 GeV*
- *• energy spread < 1%*
- *•I > 5 kA*

E304: Generating low emittance beams using downramp trapping in PWFA